cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074067 Zigzag modulo 5.

Original entry on oeis.org

1, 2, 7, 6, 5, 4, 3, 12, 11, 10, 9, 8, 17, 16, 15, 14, 13, 22, 21, 20, 19, 18, 27, 26, 25, 24, 23, 32, 31, 30, 29, 28, 37, 36, 35, 34, 33, 42, 41, 40, 39, 38, 47, 46, 45, 44, 43, 52, 51, 50, 49, 48, 57, 56, 55, 54, 53, 62, 61, 60, 59, 58, 67, 66, 65, 64, 63, 72, 71
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 17 2002

Keywords

Crossrefs

Programs

  • Haskell
    a074067 n = a074067_list !! (n-1)
    a074067_list = 1 : 2 : xs where xs = 7 : 6 : 5 : 4 : 3 : map (+ 5) xs
    -- Reinhard Zumkeller, Feb 21 2011
  • Mathematica
    {1, 2}~Join~Flatten[Reverse /@ Partition[Range[3, 72], 5]] (* after Harvey P. Dale at A074066, or *)
    {1, 2}~Join~Table[5 Floor[n/5] + 10 Floor[#/3] - # &@ Mod[n, 5], {n, 3, 69}] (* Michael De Vlieger, May 25 2016 *)
    LinearRecurrence[{1,0,0,0,1,-1},{1,2,7,6,5,4,3,12},70] (* Harvey P. Dale, Jun 18 2025 *)

Formula

a(a(n)) = n (a self-inverse permutation).
For n > 1: a(n) = n iff n == 0 modulo 5.
a(n) = 5*floor(n/5) + 10*floor((n mod 5)/3) - (n mod 5) for n > 2; a(n) = n for n <= 2.
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 8. - Chai Wah Wu, May 25 2016
G.f.: x+2*x + x^3*(7-x-x^2-x^3-x^4+2*x^5) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, May 22 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) (A002162). - Amiram Eldar, May 11 2025