A074068 Zigzag modulo 7.
1, 2, 3, 10, 9, 8, 7, 6, 5, 4, 17, 16, 15, 14, 13, 12, 11, 24, 23, 22, 21, 20, 19, 18, 31, 30, 29, 28, 27, 26, 25, 38, 37, 36, 35, 34, 33, 32, 45, 44, 43, 42, 41, 40, 39, 52, 51, 50, 49, 48, 47, 46, 59, 58, 57, 56, 55, 54, 53, 66, 65, 64, 63, 62, 61, 60, 73, 72, 71
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Alternating Permutations.
- Reinhard Zumkeller, Illustration for A074066-A074068.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1).
- Index entries for sequences that are permutations of the natural numbers.
Programs
-
Haskell
a074068 n = a074068_list !! (n-1) a074068_list = 1 : 2 : 3 : xs where xs = 10 : 9 : 8 : 7 : 6 : 5 : 4 : map (+ 7) xs -- Reinhard Zumkeller, Feb 21 2011
-
Mathematica
Range[3]~Join~Flatten[Reverse /@ Partition[Range[4, 73], 7]] (* after Harvey P. Dale at A074066, or *) Range[3]~Join~Table[7 Floor[n/7] + 14 Floor[#/4] - # &@ Mod[n, 7], {n, 4, 69}] (* Michael De Vlieger, May 25 2016 *) LinearRecurrence[{1,0,0,0,0,0,1,-1},{1,2,3,10,9,8,7,6,5,4,17},80] (* Harvey P. Dale, Jan 19 2025 *)
Formula
a(a(n)) = n (a self-inverse permutation).
For n > 1: a(n) = n iff n == 0 modulo 7.
a(n) = 7*floor(n/7) + 14*floor((n mod 7)/4) - (n mod 7) for n > 3; a(n) = n for n <= 3.
a(n) = a(n-1) + a(n-7) - a(n-8) for n > 11. - Chai Wah Wu, May 25 2016
G.f.: x+2*x^2+3*x^3 + x^4*(10-x-x^2-x^3-x^4-x^5-x^6+3*x^7) / ( (x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, May 22 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) (A002162). - Amiram Eldar, May 11 2025