cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074074 The numbers D in the set {D :=(2n+1)^2-4m^2, 1<=m<=n} that generate the smallest solution x to x^2 - D*y^2 = 1.

Original entry on oeis.org

5, 21, 33, 17, 105, 105, 189, 33, 105, 405, 333, 141, 473, 57, 817, 189, 325, 885, 77, 1425, 1173, 1925, 1425, 2301, 101, 105, 1425, 333, 777, 1785, 2525, 381, 1785, 405, 141, 3393, 2261, 3813, 6045, 2717, 4389, 3129, 2093, 6765, 885, 5513, 189, 6045, 197, 8085
Offset: 1

Views

Author

Lekraj Beedassy, Aug 28 2002

Keywords

Comments

Given a discriminant D, the Pell equation x^2-D*y^2=1 has a minimum solution x as tabulated in A033313. We start with a set of candidates D of the form (2*n+1)^2-(2*m)^2, obviously all odd, where m runs through the integers from 1 to n.
Whichever D out of this set generates the smallest x in A033313, defines a(n)=D.

Examples

			For n=4, the candidates are D=77 (m=1, index 69 in A000037), D=65 (m=2, index 57 in A000037), D=45 (m=3, index 39 in A000037) and D=17 (m=4, index 13 in A000037), which produce x = 351, x=129, x=161 and x=33 in that order (apply the offset in A033313 while converting indices from A000037 to find the x). Because 33 is the smallest of these four x, we select the associated D=17 as a(4).
		

Crossrefs

Cf. A074075 (associated m values), A074076.

Programs

  • Maple
    A033313 := proc(Dcap) local c,i,fr,nu,de ; if issqr(Dcap) then -1; else c := numtheory[cfrac](sqrt(Dcap)) ; for i from 1 do try fr := numtheory[nthconver](c,i) ; nu := numer(fr) ; de := denom(fr) ; if nu^2-Dcap*de^2=1 then RETURN(nu) ; fi; catch: RETURN(-1) ; end try; od: fi: end:
    A074074 := proc(n) local Dmin,xmin,Dcap ; Dmin := -1 ; xmin := -1; for m from 1 to n do Dcap := (2*n+1+2*m)*(2*n+1-2*m) ; x := A033313(Dcap) ; if xmin = -1 or (x >0 and xA074074(n),n=1..50) ; # R. J. Mathar, Sep 21 2009
  • Mathematica
    a[n_] := Module[{dd, sols, x, y}, dd = Table[(2 n + 1)^2 - 4 m^2, {m, 1, n}]; sols = Table[{d, x /. Solve[x > 0 && y > 0 && x^2 - d y^2 == 1, {x, y}, Integers]}, {d, dd}] /. C[1] -> 1 // Select[#, #[[2]] != {}&]&; MinimalBy[sols, #[[2, 1]]&][[1, 1]]]; Array[a,50] (* Jean-François Alcover, Oct 23 2023 *)

Extensions

Definition clarified, sequence extended beyond a(7) - R. J. Mathar, Sep 21 2009