A074173 Numbers n such that n and n+2 are of the form p^2*q where p and q are distinct primes.
18, 50, 242, 423, 475, 603, 637, 722, 845, 925, 1682, 1773, 2007, 2523, 2525, 2527, 3175, 3177, 4203, 4475, 4525, 4923, 5823, 6725, 6811, 6962, 7299, 7442, 7675, 8425, 8957, 8973, 9457, 9925, 10051, 10082, 10467, 11673, 11709, 12427, 12482, 12591
Offset: 1
Keywords
Examples
18 is a member as 18 = 3^2*2 and 20 = 2^2*5.
Links
Programs
-
Mathematica
lst={}; Do[f1=FactorInteger[n]; If[Sort[Transpose[f1][[2]]]=={1, 2}, f2=FactorInteger[n+2]; If[Sort[Transpose[f2][[2]]]=={1, 2}, AppendTo[lst, n]]], {n, 3, 10000}]; lst
Formula
Even terms in sequence are 2*A048161(n)^2. - Ray Chandler, Jun 24 2019
Extensions
More terms from T. D. Noe, Oct 04 2004