cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074229 Numbers n such that Kronecker(6,n)==mu(gcd(6,n)).

Original entry on oeis.org

1, 5, 19, 23, 25, 29, 43, 47, 49, 53, 67, 71, 73, 77, 91, 95, 97, 101, 115, 119, 121, 125, 139, 143, 145, 149, 163, 167, 169, 173, 187, 191, 193, 197, 211, 215, 217, 221, 235, 239, 241, 245, 259, 263, 265, 269, 283, 287, 289, 293, 307, 311, 313, 317, 331, 335
Offset: 1

Views

Author

Jon Perry, Sep 17 2002

Keywords

Crossrefs

Equals 2 * A072065 + 1.

Programs

  • PARI
    for (x=1,200, for (y=1,200,if (kronecker(x,y)==moebius(gcd(x,y)),write("km.txt",x,";",y," : ",kronecker(x,y)))))
    
  • PARI
    isok(n) = kronecker(6, n) == moebius(gcd(6, n)); \\ Michel Marcus, Mar 17 2014
    
  • PARI
    Vec(x*(1+4*x+14*x^2+4*x^3+x^4)/((1-x)^2*(1+x)*(1+x^2)) + O(x^100)) \\ Colin Barker, Dec 14 2015

Formula

From Colin Barker, Dec 14 2015: (Start)
a(n) = (3/2+(3*i)/2)*(i^n-i*(-i)^n)-(-1)^n+6*(n+1)-9 where i = sqrt(-1).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
G.f.: x*(1+4*x+14*x^2+4*x^3+x^4) / ((1-x)^2*(1+x)*(1+x^2)).
(End)

Extensions

More terms from Michel Marcus, Mar 17 2014