A074312 Numbers k such that the product of the digits of k equals the number of divisors of k.
1, 2, 14, 22, 24, 32, 42, 116, 122, 126, 141, 211, 221, 222, 411, 512, 1114, 1118, 1128, 1132, 1141, 1144, 1218, 1222, 1242, 1314, 1332, 1411, 1611, 1612, 2111, 2114, 2132, 2214, 2232, 2312, 2511, 3114, 3211, 3212, 4116, 4131, 4312, 6112, 8211
Offset: 1
Examples
24 is a term as the product of the digits of 24 is 2*4 = 8 and the number of divisors = 8.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory):l := 1:a[1] := 1:for n from 2 to 10000 do d := convert(n,base,10): if(product(d[i],i=1..nops(d))=tau(n)) then l := l+1:a[l] := n:fi:od:seq(a[i],i=1..l); # Sascha Kurz
-
Mathematica
Select[Range[10^4], Apply[Times, IntegerDigits[ # ]] == DivisorSigma[0, # ] &]