cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A066613 Numbers k such that the product of the nonzero digits of k equals the number of divisors of k.

Original entry on oeis.org

1, 2, 14, 22, 24, 32, 42, 116, 122, 126, 141, 202, 211, 221, 222, 260, 280, 340, 402, 411, 440, 512, 620, 840, 1021, 1041, 1062, 1114, 1118, 1128, 1132, 1141, 1144, 1201, 1202, 1206, 1218, 1222, 1242, 1250, 1314, 1332, 1340, 1380, 1401, 1411, 1602, 1611
Offset: 1

Views

Author

Amarnath Murthy, Dec 24 2001

Keywords

Examples

			24 is a term as there are 8 divisors of 24 = 2*4.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[ {a = Sort[ IntegerDigits[n]] }, While[ First[a] == 0, a = Drop[a, 1]]; Return[ Apply[ Times, a]]]; Select[ Range[10^4], f[ # ] == Length[ Divisors[ # ]] & ]
    pndQ[n_]:=Times@@Select[IntegerDigits[n],#!=0&]==DivisorSigma[0,n]; Select[Range[2000],pndQ] (* Harvey P. Dale, Oct 25 2016 *)
  • PARI
    isok(k) = { vecprod(select(x->(x!=0), digits(k))) == numdiv(k) } \\ Harry J. Smith, Mar 12 2010

Extensions

Corrected and extended by Jason Earls and Robert G. Wilson v, Dec 26 2001

A113761 Numbers k such that the number of divisors of k equals both the sum and the product of digits of k in base 10.

Original entry on oeis.org

1, 2, 22, 2114, 11222, 21122, 22211, 112116, 121116, 1111143, 1413111, 3411111, 11111128, 11111821, 11112118, 11121231, 11811112, 13111212, 18111112, 21111118, 21111181, 21121113, 23111121, 111112119, 111119211, 192111111
Offset: 1

Views

Author

Giovanni Resta, Jan 18 2006

Keywords

Comments

Intersection of A074312 and A057531.

Examples

			2114 is a term since 2+1+1+4 = 2*1*1*4 = 8 and 2114 has 8 divisors, {1, 2, 7, 14, 151, 302, 1057, 2114}.
		

Crossrefs

Programs

  • Mathematica
    L={};Do[d=IntegerDigits@n; p=Times@@d; If[p==Plus@@d && p==DivisorSigma[0, n], AppendTo[L, n];Print[n]], {n, 1000000}];L
    lst = {}; fQ[n_] := (id = IntegerDigits@n; Plus @@ id == Times @@ id == DivisorSigma[0, n]); Do[ If[ fQ@n, AppendTo[lst, n]], {n, 2*10^8}]; lst

Extensions

a(13)-a(26) from Robert G. Wilson v, Jan 19 2006
Showing 1-2 of 2 results.