cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074313 a(n) = the maximal length of a sequence of primes {s_1 = prime(n), s_2 = f(s1), s_3 = f(s_2), ....} formed by repeated application of f(m) = Floor(m/2) on prime(n).

Original entry on oeis.org

1, 1, 2, 2, 3, 1, 1, 1, 4, 1, 1, 1, 1, 1, 5, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Joseph L. Pe, Sep 22 2002

Keywords

Comments

The smallest value of n such that a(n) = 6 is n = 417.

Examples

			To compute a(9): prime(9) = 23, f(23) = 11, f(11) = 5, f(5) = 2, f(2) = 1, where f(m) = Floor(m/2). Hence the sequence (of length 4) 23, 11, 5, 2 is the sequence of primes of maximal length formed by repeated application of f to prime(9) = 23. Therefore a(9) = 4.
		

Programs

  • Mathematica
    f[n_] := Module[{i}, i = 0; m = n; While[PrimeQ[m], m = Floor[m/2]; i++ ]; i]; Table[f[Prime[i]], {i, 1, 100}]