cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074328 Numbers m such that prime(m^2+1)-prime(m^2)=2, where prime(j) is the j-th prime.

Original entry on oeis.org

7, 8, 9, 12, 15, 16, 22, 25, 27, 34, 53, 83, 85, 88, 95, 107, 108, 144, 149, 187, 196, 223, 234, 238, 249, 255, 268, 274, 315, 324, 350, 355, 358, 367, 386, 410, 411, 416, 424, 436, 440, 445, 450, 462, 469, 471, 481, 494, 501, 509, 511, 517, 522, 549, 554, 564
Offset: 1

Views

Author

Labos Elemer, Aug 21 2002

Keywords

Comments

Square roots of squares in A029707. - Michel Marcus, Oct 20 2022

Examples

			25 is a term because the 626th and 625th primes are twin primes: 4639 - 4637 = 2.
		

Crossrefs

Programs

  • Mathematica
    t=Table[0, {250}]; t1=Table[0, {250}]; s=0; k=0; Do[s=Prime[1+n^2]-Prime[n^2]; If[s==2, k=k+1; t[[k]]=n; t1[[k]]=Prime[n^2]; Print[{k, n, Prime[n^2]}]], {n, 1, 2500}] t t1
  • PARI
    isok(m) = my(p=prime(m^2)); nextprime(p+1) - p == 2; \\ Michel Marcus, Oct 20 2022
    
  • PARI
    list(lim) = {my(k = 1, prv = 2); forprime(p = 3, lim, if(p - prv == 2 && issquare(k), print1(sqrtint(k), ", ")); k++; prv = p);} \\ Amiram Eldar, Mar 20 2025