cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074351 Number of elements of S_n having order n.

Original entry on oeis.org

1, 1, 2, 6, 24, 240, 720, 5040, 40320, 514080, 3628800, 80166240, 479001600, 6797831040, 93774320640, 1307674368000, 20922789888000, 523845011289600, 6402373705728000, 153101632051630080, 2471368711740364800, 51182316789956352000, 1124000727777607680000
Offset: 1

Views

Author

K Murray Peebles (m.peebles(AT)sms.ed.ac.uk), Sep 26 2002

Keywords

Comments

If n is a prime power then a(n) = (n-1)!. - Vladeta Jovovic, Sep 29 2002

Examples

			a(10) = 514080 because {10}, {5, 2, 2, 1} and {5, 2, 1, 1, 1} are the unique multisets of cycle lengths summing to 10 whose lcm is 10 and 10!/(1!*10^1) + 10!/(1!*2!*1!*5^1*2^2*1^1) + 10!/(1!*1!*3!*5^1*2^1*1^3) = 514080.
		

Crossrefs

Cf. A001189, A074859, A290961 (the same for endofunctions).
Main diagonal of A057731.

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[ Series[ Sum[ MoebiusMu[n/i]*Exp[Sum[x^j/j, {j, Divisors[i]}]], {i, Divisors[n]}], {x, 0, n}], n]*n!; Table[a[n], {n, 1, 21}] (* Jean-François Alcover, May 21 2012, after Vladeta Jovovic *)
  • PARI
    a(n)={n!*polcoeff(sumdiv(n, i, moebius(n/i)*exp(sumdiv(i, j, x^j/j) + O(x*x^n))), n)} \\ Andrew Howroyd, Jul 02 2018

Formula

n!/(a_1!*a_2!*...*a_d!*k_1^a_1*k_2^a_2*...*k_d^a_d) is the number of elements of S_n having order n that are permutations with distinct cycle-lengths k_1, ..., k_d having multiplicities a_1, ..., a_d, where lcm(k_1, ..., k_d)=n. Summing over all permutation types gives the total.
a(n) = n!*coefficient of x^n in expansion of Sum_{i divides n} mu(n/i)*exp(Sum_{j divides i} x^j/j). - Vladeta Jovovic, Sep 29 2002