A074363
Coefficient of q^3 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(3,1).
Original entry on oeis.org
0, 0, 0, 0, 0, 36, 246, 1293, 6057, 26592, 111934, 457353, 1827529, 7176636, 27789976, 106371588, 403204880, 1515647250, 5656172420, 20974163475, 77339044883, 283743384228, 1036296662574, 3769287797151, 13658724680991, 49325767966842, 177570110818794
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=3, nu(2)=10, nu(3)=33+3q, nu(4)=109+19q+10q^2, nu(5)=360+93q+66q^2+36q^3+3q^4, so the coefficients of q^1 are 0,0,0,0,0,36.
- Colin Barker, Table of n, a(n) for n = 0..1001
- M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
- Index entries for linear recurrences with constant coefficients, signature (12,-50,72,21,-72,-50,-12,-1).
More terms from Brent Lehman (mailbjl(AT)yahoo.com), Aug 25 2002
A074358
Coefficient of q^1 in nu(n), where nu(0)=1, nu(1)=b and, for n >= 2, nu(n) = b*nu(n-1) + lambda*(1 + q + q^2 + ... + q^(n-2))*nu(n-2) with (b,lambda)=(2,2).
Original entry on oeis.org
0, 0, 0, 4, 20, 80, 288, 976, 3184, 10112, 31488, 96576, 292672, 878336, 2614784, 7731456, 22728448, 66482176, 193617920, 561718272, 1624101888, 4681535488, 13457924096, 38592008192, 110419341312, 315287830528, 898583560192
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=2, nu(2)=6, nu(3) = 16 + 4q, nu(4) = 44 + 20q + 12q^2, nu(5) = 120 + 80q + 64q^2 + 40q^3 + 8q^4, so the coefficients of q^1 are 0,0,0,4,20,80.
-
nu := proc(b,lambda,n) global q; local qp,i ; if n = 0 then RETURN(1) ; elif n =1 then RETURN(b) ; fi ; qp:=0 ; for i from 0 to n-2 do qp := qp + q^i ; od ; RETURN( b*nu(b,lambda,n-1)+lambda*qp*nu(b,lambda,n-2)) ; end: A074358 := proc(n) RETURN( coeftayl(nu(2,2,n),q=0,1) ) ; end: for n from 0 to 30 do printf("%d,", A074358(n)) ; od ; # R. J. Mathar, Sep 20 2006
-
nu[0] = 1; nu[1] = 2; nu[n_] := nu[n] = 2*nu[n-1] + 2*Total[q^Range[0, n-2] ]*nu[n-2] // Expand;
a[n_] := Coefficient[nu[n], q, 1];
Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Nov 17 2017 *)
A074361
Coefficient of q^1 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(3,1).
Original entry on oeis.org
0, 0, 0, 3, 19, 93, 407, 1674, 6618, 25455, 95953, 356151, 1305887, 4741092, 17072484, 61055787, 217074895, 767882865, 2704365719, 9487509102, 33170122494, 115614094071, 401864286637, 1393378817259, 4820368210175
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=3, nu(2)=10, nu(3)=33+3q, nu(4)=109+19q+10q^2, nu(5)=360+93q+66q^2+36q^3+3q^4, so the coefficients of q^1 are 0,0,0,3,19,93.
-
CoefficientList[Series[(x^4+3x^3)/(1-3x-x^2)^2,{x,0,30}],x] (* or *) Join[{0},LinearRecurrence[{6,-7,-6,-1},{0,0,3,19},30]] (* Harvey P. Dale, Jan 16 2012 *)
More terms from Brent Lehman (mailbjl(AT)yahoo.com), Aug 25 2002
A074359
Coefficient of q^2 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(2,2).
Original entry on oeis.org
0, 0, 0, 0, 12, 64, 280, 1088, 3968, 13856, 46912, 155136, 503616, 1610496, 5086336, 15895552, 49229312, 151275008, 461662208, 1400356864, 4224703488, 12683452416, 37911164928, 112865394688, 334788444160, 989756825600
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=2, nu(2)=6, nu(3)=16+4q, nu(4)=44+20q+12q^2, nu(5)=120+80q+64q^2+40q^3+8q^4, so the coefficients of q^2 are 0,0,0,0,12,64.
- M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
- Index entries for linear recurrences with constant coefficients, signature (6, -6, -16, 12, 24, 8).
-
nu := proc(n,b,lambda) if n = 0 then 1 ; elif n = 1 then b ; else b*nu(n-1,b,lambda)+lambda*nu(n-2,b,lambda)*add(q^i,i=0..n-2) ; fi ; end: A074359 := proc(n) local b,lambda,thisnu ; b := 2 ; lambda := 2 ; thisnu := nu(n,b,lambda) ; RETURN( coeftayl(thisnu,q=0,2) ) ; end: for n from 0 to 40 do printf("%d, ",A074359(n) ) ; od ; # R. J. Mathar, Mar 20 2007
-
Join[{0, 0}, LinearRecurrence[{6, -6, -16, 12, 24, 8}, {0, 0, 12, 64, 280, 1088}, 24]] (* Jean-François Alcover, Sep 23 2017 *)
A074362
Coefficient of q^2 in nu(n), where nu(0) = 1, nu(1) = b and, for n >= 2, nu(n) = b*nu(n-1) + lambda*(1 + q + q^2 + ... + q^(n-2))*nu(n-2) with (b,lambda) = (3,1).
Original entry on oeis.org
0, 0, 0, 0, 10, 66, 336, 1527, 6513, 26667, 106102, 413265, 1583331, 5986689, 22392606, 83002842, 305308666, 1115587020, 4052786850, 14648359515, 52705460583, 188868467853, 674332868566, 2399653030899, 8513523719661
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
The first 6 nu polynomials are nu(0) = 1, nu(1) = 3, nu(2) = 10, nu(3) = 33 + 3*q, nu(4) = 109 + 19*q + 10*q^2, nu(5) = 360 + 93*q + 66*q^2 + 36*q^3 + 3*q^4, so the coefficients of q^1 are 0,0,0,0,10,66.
- M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
- Index entries for linear recurrences with constant coefficients, signature (9, -24, 9, 24, 9, 1).
-
Join[{0, 0}, LinearRecurrence[{9, -24, 9, 24, 9, 1}, {0, 0, 10, 66, 336, 1527}, 30]] (* Jean-François Alcover, Dec 13 2018 *)
More terms from Brent Lehman (mailbjl(AT)yahoo.com), Aug 25 2002
Showing 1-5 of 5 results.
Comments