cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074391 a(n) is the smallest number such that gcd(a(n), sigma(a(n))) = n.

Original entry on oeis.org

1, 10, 15, 12, 95, 6, 91, 56, 153, 40, 473, 24, 117, 182, 135, 336, 1139, 90, 703, 380, 861, 946, 3151, 168, 3725, 468, 1431, 28, 5017, 570, 775, 992, 891, 2176, 4865, 792, 2701, 1406, 585, 280, 6683, 546, 11051, 1892, 1305, 6302, 13207, 528, 4753, 5800
Offset: 1

Views

Author

Labos Elemer, Aug 23 2002

Keywords

Comments

a(n) is the smallest number k such that A017666(k), the denominator of sigma(k)/k, is equal to k/n. - Jaroslav Krizek, Sep 23 2014
Each term a(n) is divisible by its index n. - Michel Marcus, Jan 13 2015

Examples

			n=6: a(6)=6 because gcd(6, sigma(6))=6 and a(6)=6 is the smallest.
		

Crossrefs

Programs

  • Magma
    A074391:=func; [A074391(n): n in[1..100]] // Jaroslav Krizek, Sep 23 2014
    
  • Maple
    f:= proc(n) local k;
      for k from n by n do
        if igcd(k, numtheory:-sigma(k))=n then return k fi
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 11 2020
  • Mathematica
    f[x_] := GCD[DivisorSigma[1, x], x] t=Table[0, {100}]; Do[s=f[n]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 1000000}];
  • PARI
    a(n) = my(k=1); while (gcd(sigma(k), k) != n, k++); k; \\ Michel Marcus, Jan 13 2015

Formula

a(n) = Min{x; gcd(x, sigma(x))} = Min{x; gcd(x, A000203(x))} = n. - corrected by Michel Marcus, Jan 13 2015