A074398 Number of primes between n and phi(n), with neither n nor phi(n) included in the count in case they are primes.
0, 0, 0, 1, 0, 2, 0, 2, 1, 2, 0, 3, 0, 3, 2, 2, 0, 4, 0, 4, 3, 4, 0, 5, 1, 4, 2, 4, 0, 6, 0, 5, 3, 5, 2, 6, 0, 5, 3, 6, 0, 8, 0, 6, 5, 6, 0, 9, 2, 7, 4, 6, 0, 9, 4, 7, 5, 7, 0, 11, 0, 8, 7, 7, 3, 10, 0, 8, 5, 10, 0, 11, 0, 10, 9, 10, 4, 12, 0, 11, 6, 10, 0, 14, 5, 10, 7, 11, 0, 15, 4, 10, 7, 10, 4, 13, 0
Offset: 1
Examples
phi(6) = 2 and there are 2 primes between 2 and 6 (endpoints are excluded), namely 3, 5. Hence a(6) = 2.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
(*gives number of primes < n*) f[n_] := Module[{r, i}, r = 0; i = 1; While[Prime[i] < n, i++ ]; i - 1]; (*gives number of primes between m and n with endpoints excluded*) g[m_, n_] := Module[{r}, r = f[m] - f[n]; If[PrimeQ[n], r = r - 1]; r]; Table[g[n, EulerPhi[n]], {n, 1, 100}] (* Second program: *) Array[PrimePi@ # - PrimePi@ EulerPhi@ # - Boole@ PrimeQ@ # &, 96] (* or *) Array[Count[Range[EulerPhi@ # + 1, # - 1], ?PrimeQ] &, 96] (* _Michael De Vlieger, Dec 16 2017 *)
-
PARI
A074398(n) = (primepi(n) - primepi(eulerphi(n)) - isprime(n)); \\ Antti Karttunen, Dec 16 2017
Formula
Extensions
Name clarified by Antti Karttunen, Dec 16 2017