cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074399 a(n) is the largest prime divisor of n(n+1).

Original entry on oeis.org

2, 3, 3, 5, 5, 7, 7, 3, 5, 11, 11, 13, 13, 7, 5, 17, 17, 19, 19, 7, 11, 23, 23, 5, 13, 13, 7, 29, 29, 31, 31, 11, 17, 17, 7, 37, 37, 19, 13, 41, 41, 43, 43, 11, 23, 47, 47, 7, 7, 17, 17, 53, 53, 11, 11, 19, 29, 59, 59, 61, 61, 31, 7, 13, 13, 67, 67, 23, 23, 71, 71, 73, 73, 37, 19
Offset: 1

Views

Author

N. J. A. Sloane, Nov 29 2002

Keywords

Comments

Størmer shows that a(n) tends to infinity with n. Pólya generalized this result to other polynomials.
Kotov shows that a(n) >> log log n. - Charles R Greathouse IV, Mar 26 2012
Keates and Schinzel give effective constants for the above; in particular the latter shows that lim inf a(n)/log log n >= 2/7. - Charles R Greathouse IV, Nov 12 2012
Erdős conjectures ("on very flimsy probabilistic grounds") that for every e > 0, a(n) < (log n)^(2+e) infinitely often, while a(n) < (log n)^(2-e) only finitely often. - Charles R Greathouse IV, Mar 11 2015

References

  • S. V. Kotov, The greatest prime factor of a polynomial (in Russian), Mat. Zametki 13 (1973), pp. 515-522.
  • K. Mahler, Über den größten Primteiler spezieller Polynome zweiten Grades, Archiv for mathematik og naturvidenskab 41:6 (1934), pp. 3-26.
  • Georg Pólya, Zur arithmetischen Untersuchung der Polynome, Math. Zeitschrift 1 (1918), pp. 143-148.

Crossrefs

With A037464, the bisections of A076605.
Essentially the same as A069902.
Positions of primes <= p: A085152 (p=5), A085153 (p=7), A252494 (p=11), A252493 (p=13), A252492 (p=17).
Last position of each prime: A002072.

Programs

  • Mathematica
    Table[ Last[ Table[ # [[1]]] & /@ FactorInteger[n^2 - 1]], {n, 3, 160, 2}]
    Table[FactorInteger[n(n+1)][[-1,1]],{n,80}] (* Harvey P. Dale, Sep 28 2021 *)
  • PARI
    gpf(n)=my(f=factor(n)[,1]); f[#f]
    a(n)=if(n<3, n+1, max(gpf(n),gpf(n+1))) \\ Charles R Greathouse IV, Sep 14 2015

Formula

a(n) = Max (A006530(2n), A006530(2n+2)).
Pasten proves that a(n) >> (log log n)^2/(log log log n), see Corollary 1.5. - Charles R Greathouse IV, Oct 14 2024

Extensions

Extended by Robert G. Wilson v, Dec 02 2002