A074399 a(n) is the largest prime divisor of n(n+1).
2, 3, 3, 5, 5, 7, 7, 3, 5, 11, 11, 13, 13, 7, 5, 17, 17, 19, 19, 7, 11, 23, 23, 5, 13, 13, 7, 29, 29, 31, 31, 11, 17, 17, 7, 37, 37, 19, 13, 41, 41, 43, 43, 11, 23, 47, 47, 7, 7, 17, 17, 53, 53, 11, 11, 19, 29, 59, 59, 61, 61, 31, 7, 13, 13, 67, 67, 23, 23, 71, 71, 73, 73, 37, 19
Offset: 1
References
- S. V. Kotov, The greatest prime factor of a polynomial (in Russian), Mat. Zametki 13 (1973), pp. 515-522.
- K. Mahler, Über den größten Primteiler spezieller Polynome zweiten Grades, Archiv for mathematik og naturvidenskab 41:6 (1934), pp. 3-26.
- Georg Pólya, Zur arithmetischen Untersuchung der Polynome, Math. Zeitschrift 1 (1918), pp. 143-148.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- P. Erdős, Problems and results on number theoretic properties of consecutive integers and related questions, Proceedings of the Fifth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1975), Congress. Numer. XVI , pp. 25-44, Utilitas Math., Winnipeg, Man., 1976.
- M. Keates, On the greatest prime factor of a polynomial (1968), pp. 301-303.
- Hector Pasten, The largest prime factor of n^2+1 and improvements on subexponential ABC, arXiv:2312.03566 [math.NT] (2024)
- A. Schinzel, On two theorems of Gelfond and some of their applications, Acta Arithmetica 13:2 (1967-1968), pp. 177-236.
- Carl Størmer, Quelques théorèmes sur l'équation de Pell x^2 - Dy^2 = +-1 et leurs applications (in French), Skrifter udgivne af Videnskabsselskabet i Christiania: Mathematisk-naturvidenskabelig Klasse (1897).
Crossrefs
Programs
-
Mathematica
Table[ Last[ Table[ # [[1]]] & /@ FactorInteger[n^2 - 1]], {n, 3, 160, 2}] Table[FactorInteger[n(n+1)][[-1,1]],{n,80}] (* Harvey P. Dale, Sep 28 2021 *)
-
PARI
gpf(n)=my(f=factor(n)[,1]); f[#f] a(n)=if(n<3, n+1, max(gpf(n),gpf(n+1))) \\ Charles R Greathouse IV, Sep 14 2015
Formula
Pasten proves that a(n) >> (log log n)^2/(log log log n), see Corollary 1.5. - Charles R Greathouse IV, Oct 14 2024
Extensions
Extended by Robert G. Wilson v, Dec 02 2002
Comments