cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A085153 All prime factors of n and n+1 are <= 7. (Related to the abc conjecture.)

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80, 125, 224, 2400, 4374
Offset: 1

Views

Author

Benoit Cloitre, Jun 21 2003

Keywords

Comments

The ABC conjecture would imply that if the prime factors of A, B, C are prescribed in advance, then there is only a finite number of solutions to the equation A + B = C with gcd(A,B,C)=1 (indeed it would bound C to be no more than "roughly" the product of those primes). So in particular there ought to be only finitely many pairs of adjacent integers whose prime factors are limited to {2, 3, 5, 7} (D. Rusin).
This sequence is complete by a theorem of Stormer. See A002071. - T. D. Noe, Mar 03 2008
This is the 4th row of the table A138180. It has 23=A002071(4)=A145604(1)+...+ A145604(4) terms and ends with A002072(4)=4374. It is the union of all terms in rows 1 through 4 of the table A145605. It is a subsequence of A252494 and contains A085152 as a subsequence. - M. F. Hasler, Jan 16 2015
Equivalently, this is the sequence of numbers for which A074399(n) <= 7, or A252489(n) <= 4.

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], FactorInteger[ # (# + 1)][[ -1,1]] <= 7 &] (* T. D. Noe, Mar 03 2008 *)
  • PARI
    for(n=1,9e6,vecmax(factor(n++)[,1])<8 && vecmax(factor(n--+(n<2))[,1])<8 && print1(n",")) \\ M. F. Hasler, Jan 16 2015

Extensions

Edited by Dean Hickerson, Jun 30 2003

A076605 Largest prime divisor of n^2 - 1.

Original entry on oeis.org

3, 2, 5, 3, 7, 3, 7, 5, 11, 5, 13, 7, 13, 7, 17, 3, 19, 5, 19, 11, 23, 11, 23, 13, 5, 13, 29, 7, 31, 5, 31, 17, 11, 17, 37, 19, 37, 19, 41, 7, 43, 11, 43, 23, 47, 23, 47, 5, 17, 13, 53, 13, 53, 7, 19, 29, 59, 29, 61, 31, 61, 31, 13, 11, 67, 17, 67, 17, 71, 7
Offset: 2

Views

Author

Jon Perry, Oct 21 2002

Keywords

Comments

Also the largest prime that divides either n-1 or n+1.
Størmer shows that a(n) tends to infinity with n. Schinzel shows that lim inf a(n)/log log n >= 2 and, using lower bounds for linear forms of logarithms, this inequality can be generalized for general quadratic polynomials, with 2 replaced by 4/7 for irreducible ones and 2/7 for reducible ones. - Tomohiro Yamada, Apr 15 2017

Examples

			n=11: the largest prime factor of 10 and 12 is 5, therefore a(11) = 5.
		

References

  • K. Mahler, "Uber den grossten Primteiler spezieller Polynome zweiten Grades", Arch. Math. Naturvid. B.41, 1935, pp. 3 - 26.

Crossrefs

Cf. A006530, A037464, A074399 (bisections).
Cf. A175607.
Cf. A014442 (largest prime divisor of n^2 + 1). - Tomohiro Yamada, Apr 15 2017

Programs

  • Mathematica
    Table[ Last[ Table[ # [[1]]] & /@ FactorInteger[n^2 - 1]], {n, 2, 80}]
  • PARI
    for (n=3,100, print1(","max(factor(n-1)[,1][length(factor(n-1)[,1])],factor(n+1)[,1][length(factor(n+1)[,1])])))

A069902 Largest prime factor of n(n+1)/2, the n-th triangular number.

Original entry on oeis.org

1, 3, 3, 5, 5, 7, 7, 3, 5, 11, 11, 13, 13, 7, 5, 17, 17, 19, 19, 7, 11, 23, 23, 5, 13, 13, 7, 29, 29, 31, 31, 11, 17, 17, 7, 37, 37, 19, 13, 41, 41, 43, 43, 11, 23, 47, 47, 7, 7, 17, 17, 53, 53, 11, 11, 19, 29, 59, 59, 61, 61, 31, 7, 13, 13, 67
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 10 2002

Keywords

Comments

Essentially the same as A074399, which has many comments, references and links.

Examples

			A000217(9) = 9*(9+1)/2 = 45 = 3*3*5, therefore a(9) = 5.
		

Crossrefs

Related properties of triangular numbers: A069901, A069903, A069904.

Programs

  • Mathematica
    PrimeFactors[n_]:=Flatten[Table[ #[[1]],{1}]&/@FactorInteger[n]]; Table[PrimeFactors[n*(n-1)/2][[ -1]],{n,2,6!}] (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)
    (* Second program: *)
    Array[FactorInteger[PolygonalNumber[#]][[-1, 1]] &, 66] (* Michael De Vlieger, Sep 14 2023 *)
  • PARI
    \\ written for a(n), n >= 2
    a(n)=vecmax(factor(n*(n+1)/2)[,1]) \\ M. F. Hasler, May 02 2015

Formula

a(n) = A006530(A000217(n)).

Extensions

Edited by Peter Munn, Sep 14 2023

A093074 Greatest prime factor of n and its direct neighbors.

Original entry on oeis.org

2, 3, 3, 5, 5, 7, 7, 7, 5, 11, 11, 13, 13, 13, 7, 17, 17, 19, 19, 19, 11, 23, 23, 23, 13, 13, 13, 29, 29, 31, 31, 31, 17, 17, 17, 37, 37, 37, 19, 41, 41, 43, 43, 43, 23, 47, 47, 47, 7, 17, 17, 53, 53, 53, 11, 19, 29, 59, 59, 61, 61, 61, 31, 13, 13, 67, 67, 67, 23, 71, 71, 73
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 18 2004

Keywords

Comments

a(n) = A006530(n + A093075(n));
a(n) = max{A006530(n-1), A006530(n), A006530(n+1)}, n>1;
a(n) = A006530(A007531(n+1)), n>1;
for all primes p>2: a(p)=a(p-1)=p and if p is not the lesser member of a twin prime pair, then also a(p+1)=p;
(n,n+2) is a twin prime pair iff a(n-1)=a(n)=n and a(n+1)=a(n+2)=a(n+3)=n+2.

Crossrefs

Programs

  • Haskell
    a093074 1 = 2
    a093074 n = maximum $ map a006530 [n-1..n+1]
    -- Reinhard Zumkeller, Jul 04 2012
    
  • PARI
    a(n)=my(p=precprime(n+1));if(p>n-2,p,vecmax(apply(n->vecmax(factor(n)[,1]),[n-1,n,n+1]))) \\ Charles R Greathouse IV, Feb 19 2013

Formula

a(n) > 47 if n > 212381. - Charles R Greathouse IV, Feb 19 2013

A037464 Bisection of A076605.

Original entry on oeis.org

3, 5, 7, 7, 11, 13, 13, 17, 19, 19, 23, 23, 5, 29, 31, 31, 11, 37, 37, 41, 43, 43, 47, 47, 17, 53, 53, 19, 59, 61, 61, 13, 67, 67, 71, 73, 73, 11, 79, 79, 83, 83, 29, 89, 89, 31, 31, 97, 97, 101, 103, 103, 107, 109, 109, 113, 113, 23, 17, 17, 41, 41, 127, 127, 131, 131, 19
Offset: 1

Views

Author

N. J. A. Sloane, Nov 29 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ Last[ Table[ # [[1]]] & /@ FactorInteger[n^2 - 1]], {n, 2, 150, 2}]
  • PARI
    a(n) = my(p = factor(4*n^2-1)[, 1]); p[#p]; \\ Amiram Eldar, Nov 03 2024

Formula

a(n) = max(A006530(2n-1), A006530(2n+1)).
a(n) = A076605(2*n). - Amiram Eldar, Nov 03 2024

Extensions

Extended by Robert G. Wilson v, Dec 02 2002

A190136 Largest prime factor of n*(n+1)*(n+2)*(n+3).

Original entry on oeis.org

3, 5, 5, 7, 7, 7, 7, 11, 11, 13, 13, 13, 13, 17, 17, 19, 19, 19, 19, 23, 23, 23, 23, 13, 13, 29, 29, 31, 31, 31, 31, 17, 17, 37, 37, 37, 37, 41, 41, 43, 43, 43, 43, 47, 47, 47, 47, 17, 17, 53, 53, 53, 53, 19, 29, 59, 59, 61, 61, 61, 61, 31, 13, 67, 67, 67
Offset: 1

Views

Author

Reinhard Zumkeller, May 07 2011

Keywords

Comments

a(n) > 11 for n > 9;
a(A086801(n)) = A000040(n) for n > 2.
It follows from Størmer's theorem that lim inf a(n) = infinity, and in fact a(n) >> log log n. - Charles R Greathouse IV, Feb 19 2013

Examples

			Numbers m <= 10^6 such that a(m) = p:
p=13: 10, 11, 12, 13, 24, 25, 63;
p=17: 14, 15, 32, 33, 48, 49;
p=19: 16, 17, 18, 19, 54, 75, 168;
p=23: 20, 21, 22, 23, 207, 322;
p=29: 26, 27, 55, 114;
p=31: 28, 29, 30, 31, 62, 90, 152, 153, 340, 493, 1518;
p=37: 34, 35, 36, 37, 74, 184, 405;
p=41: 38, 39, 123, 245, 285, 286, 287, 492, 1023, 1517, 1680;
p=43: 40, 41, 42, 43, 84, 85, 169, 258, 341, 342, 558, 1330, 1331, 2106, 5289, 10878;
p=47: 44, 45, 46, 47, 91, 92, 93, 185, 186, 187, 374, 375, 702, 986, 987, 17575;
p=53: 50, 51, 52, 53, 159, 368, 369, 527, 845, 899, 900, 1375;
p=59: 56, 57, 115, 116, 117, 118, 174, 294, 528, 529, 530, 648, 943, 1885, 6783;
p=61: 58, 59, 60, 61, 119, 120, 121, 122, 182, 183, 242, 243, 244, 549, 608, 609, 1034, 1218, 1219, 1767, 1768, 2013, 2254, 2622;
p=67: 64, 65, 66, 67, 132, 133, 735, 1271, 1272, 1273, 2208, 2277, 3885, 4958, 5828, 5829;
p=71: 68, 69, 140, 141, 142, 284, 423, 424, 494, 636, 637, 779, 780, 781, 3477, 3478, 3549, 3550, 4899;
p=73: 70, 71, 72, 73, 143, 144, 145, 219, 363, 510, 728, 729, 803, 1022, 1239, 1679, 2772, 70224;
p=79: 76, 77, 78, 79, 158, 234, 235, 472, 473, 474, 550, 867, 868, 1024, 1104, 1419, 2209, 2448, 2923, 3476, 3869, 4898, 5290, 7502, 46136, 70150;
p=83: 80, 81, 82, 83, 246, 247, 413, 495, 663, 664, 1078, 1159, 1824, 2736, 3483, 4232, 4896, 4897, 7137, 8214, 12614, 36517, 97524;
p=89: 86, 87, 88, 89, 175, 264, 265, 354, 531, 710, 711, 712, 798, 1245, 1332, 2847, 4895, 5073, 6318, 18423, 28302, 29279;
p=97: 94, 95, 96, 97, 288, 289, 483, 580, 581, 582, 774, 873, 1064, 1065, 1455, 2132, 2133, 3007, 3975, 4556, 4557, 6496, 6497, 6887, 7564, 7565, 7566, 13869, 17457.
		

References

  • Paulo Ribenboim, Galimatias Arithmeticae (Chap 11), in 'My Numbers, My Friends', Springer-Verlag 2000 NY, page 345.
  • J. J. Sylvester, "On arithmetical series", Messenger of Mathematics 21 (1892), pp. 1-19 and 87-120.
  • M. Faulkner, "On a theorem of Sylvester and Schur", J. London Math. Soc. 41:1 (1966), pp. 107-110.

Crossrefs

Programs

  • Haskell
    a190136 n = maximum $ map a006530 [n..n+3]
    
  • Mathematica
    Table[FactorInteger[Times@@(n+Range[0,3])][[-1,1]],{n,70}] (* Harvey P. Dale, Mar 19 2018 *)
  • PARI
    gpf(n)=vecmax(factor(n)[,1])
    a(n)=my(p=precprime(n+3));if(pCharles R Greathouse IV, Feb 19 2013

Formula

a(n) = max{gpf(n), gpf(n+1), gpf(n+2), gpf(n+3)} = gpf(A052762(n+3)) with gpf = A006530, greatest prime factor.
a(n) > 47 for n > 17575. - Charles R Greathouse IV, Feb 19 2013

A252489 Index of the largest prime which divides n*(n+1).

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 2, 3, 5, 5, 6, 6, 4, 3, 7, 7, 8, 8, 4, 5, 9, 9, 3, 6, 6, 4, 10, 10, 11, 11, 5, 7, 7, 4, 12, 12, 8, 6, 13, 13, 14, 14, 5, 9, 15, 15, 4, 4, 7, 7, 16, 16, 5, 5, 8, 10, 17, 17, 18, 18, 11, 4, 6, 6, 19, 19, 9, 9, 20, 20, 21, 21, 12, 8, 8, 6
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2015

Keywords

Comments

Yields the row of A145605 in which n appears, and also the first row of A138180 in which n appears.

Crossrefs

Programs

  • Maple
    A061395:= [1, seq(numtheory:-pi(max(numtheory:-factorset(n))), n=2..101)]:
    zip(max,A061395[1..-2],A061395[2..-1]); # Robert Israel, Feb 12 2021
  • Mathematica
    a[n_] := PrimePi[Max[FactorInteger[n][[-1, 1]], FactorInteger[n+1][[-1, 1]]]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 05 2023 *)
  • PARI
    a(n)=primepi(vecmax(factor(n*(n+1))[,1]))

Formula

a(n) = pi(A074399(n)), where pi = A000720.
a(n) = max(A061395(n),A061395(n+1)). - Robert Israel, Feb 12 2021

A199423 Greatest prime factor of n and 2*n+1.

Original entry on oeis.org

3, 5, 7, 3, 11, 13, 7, 17, 19, 7, 23, 5, 13, 29, 31, 11, 17, 37, 19, 41, 43, 11, 47, 7, 17, 53, 11, 19, 59, 61, 31, 13, 67, 23, 71, 73, 37, 19, 79, 5, 83, 17, 43, 89, 13, 31, 47, 97, 11, 101, 103, 13, 107, 109, 37, 113, 23, 29, 59, 11, 61, 31, 127, 43, 131, 19
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[Flatten[FactorInteger[{n,2 n+1}],1][[All,1]]],{n,70}] (* Harvey P. Dale, Mar 25 2020 *)
  • PARI
    gpf(n)=local(ps);if(n<2,n,ps=factor(n)[,1]~;ps[#ps])
    vector(80,n,gpf(n*(2*n+1)))

Formula

a(n) = A006530(A014105(n)).

A321069 Greatest prime factor of n^3+2.

Original entry on oeis.org

3, 5, 29, 11, 127, 109, 23, 257, 43, 167, 43, 173, 733, 1373, 307, 683, 983, 2917, 2287, 4001, 157, 71, 283, 223, 5209, 47, 127, 3659, 24391, 587, 9931, 113, 433, 6551, 809, 569, 307, 27437, 433, 10667, 439, 239, 1559, 223, 91127, 16223, 4153, 457, 39217, 62501
Offset: 1

Views

Author

Keywords

Crossrefs

Greatest prime factors of polynomials: A006530 (n), A076565 (2n+1), A076566 (3n+3), A076567 (4n+6), A164314 (n^2-2), A076605 (n^2-1), A014442 (n^2+1), A069902 (n^2+n), A074399 (n^2+n), A199423 (2n^2+n), A089619 (2n^2+2n+1), A037464 (4n^2-1), A253254 (9n^2-7n), A093074 (n^3-n), A081257 (n^3-1), A081256 (n^3+1), A321069(n^3+2), A281793 (n^3+n^2+n+1), A281793 (n^4-1), A096172 (n^4+1), A190136 (n^4 + 6n^3 + 11n^2 + 6n), A140538 (2n^4+1), A240548 (n^5+1), A281794 (n^5+n^3+n^2+1), A240549 (n^6+1), A240550 (n^7+1), A240551 (n^8+1), A240552 (n^9+1), A240553 (n^10+1).

Programs

  • Magma
    [Maximum(PrimeDivisors(n^3 + 2)): n in [1..60]]; // Vincenzo Librandi, Oct 27 2018
    
  • Mathematica
    Table[FactorInteger[n^3 + 2] [[-1, 1]], {n, 80}] (* Vincenzo Librandi, Oct 27 2018 *)
  • PARI
    a(n) = vecmax(factor(n^3+2)[,1]); \\ Michel Marcus, Oct 27 2018
Showing 1-9 of 9 results.