cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A007531 a(n) = n*(n-1)*(n-2) (or n!/(n-3)!).

Original entry on oeis.org

0, 0, 0, 6, 24, 60, 120, 210, 336, 504, 720, 990, 1320, 1716, 2184, 2730, 3360, 4080, 4896, 5814, 6840, 7980, 9240, 10626, 12144, 13800, 15600, 17550, 19656, 21924, 24360, 26970, 29760, 32736, 35904, 39270, 42840, 46620, 50616, 54834, 59280, 63960, 68880
Offset: 0

Views

Author

Keywords

Comments

Ed Pegg Jr conjectures that n^3 - n = k! has a solution if and only if n is 2, 3, 5 or 9 (when k is 3, 4, 5 and 6).
Three-dimensional promic (or oblong) numbers, cf. A002378. - Alexandre Wajnberg, Dec 29 2005
Doubled first differences of tritriangular numbers A050534(n) = (1/8)n(n + 1)(n - 1)(n - 2). a(n) = 2*(A050534(n+1) - A050534(n)). - Alexander Adamchuk, Apr 11 2006
If Y is a 4-subset of an n-set X then, for n >= 6, a(n-4) is the number of (n-5)-subsets of X having exactly two elements in common with Y. - Milan Janjic, Dec 28 2007
Convolution of A005843 with A008585. - Reinhard Zumkeller, Mar 07 2009
a(n) = A000578(n) - A000567(n). - Reinhard Zumkeller, Sep 18 2009
For n > 3: a(n) = A173333(n, n-3). - Reinhard Zumkeller, Feb 19 2010
Let H be the n X n Hilbert matrix H(i, j) = 1/(i+j-1) for 1 <= i, j <= n. Let B be the inverse matrix of H. The sum of the elements in row 2 of B equals (-1)^n a(n+1). - T. D. Noe, May 01 2011
a(n) equals 2^(n-1) times the coefficient of log(3) in 2F1(n-2, n-2, n, -2). - John M. Campbell, Jul 16 2011
For n > 2 a(n) = 1/(Integral_{x = 0..Pi/2} (sin(x))^5*(cos(x))^(2*n-5)). - Francesco Daddi, Aug 02 2011
a(n) is the number of functions f:[3] -> [n] that are injective since there are n choices for f(1), (n-1) choices for f(2), and (n-2) choices for f(3). Also, a(n+1) is the number of functions f:[3] -> [n] that are width-2 restricted (that is, the pre-image under f of any element in [n] is of size 2 or less). See "Width-restricted finite functions" link below. - Dennis P. Walsh, Mar 01 2012
This sequence is produced by three consecutive triangular numbers t(n-1), t(n-2) and t(n-3) in the expression 2*t(n-1)*(t(n-2)-t(n-3)) for n = 0, 1, 2, ... - J. M. Bergot, May 14 2012
For n > 2: A020639(a(n)) = 2; A006530(a(n)) = A093074(n-1). - Reinhard Zumkeller, Jul 04 2012
Number of contact points between equal spheres arranged in a tetrahedron with n - 1 spheres in each edge. - Ignacio Larrosa Cañestro, Jan 07 2013
Also for n >= 3, area of Pythagorean triangle in which one side differs from hypotenuse by two units. Consider any Pythagorean triple (2n, n^2-1, n^2+1) where n > 1. The area of such a Pythagorean triangle is n(n^2-1). For n = 2, 3, 4,.. the areas are 6, 24, 60, .... which are the given terms of the series. - Jayanta Basu, Apr 11 2013
Cf. A130534 for relations to colored forests, disposition of flags on flagpoles, and colorings of the vertices (chromatic polynomial) of the complete graph K_3. - Tom Copeland, Apr 05 2014
Starting with 6, 24, 60, 120, ..., a(n) is the number of permutations of length n>=3 avoiding the partially ordered pattern (POP) {1>2} of length 5. That is, the number of length n permutations having no subsequences of length 5 in which the first element is larger than the second element. - Sergey Kitaev, Dec 11 2020
For integer m and positive integer r >= 2, the polynomial a(n) + a(n + m) + a(n + 2*m) + ... + a(n + r*m) in n has its zeros on the vertical line Re(n) = (2 - r*m)/2 in the complex plane. - Peter Bala, Jun 02 2024

References

  • R. K. Guy, Unsolved Problems in Theory of Numbers, Section D25.
  • L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 40.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

binomial(n, k): A161680 (k = 2), A000332 (k = 4), A000389 (k = 5), A000579 (k = 6), A000580 (k = 7), A000581 (k = 8), A000582 (k = 9).
Cf. A028896.

Programs

  • Haskell
    a007531 n = product [n-2..n]  -- Reinhard Zumkeller, Jul 04 2012
    
  • Magma
    [n*(n-1)*(n-2): n in [0..40]]; // Vincenzo Librandi, May 02 2011
    
  • Maple
    [seq(6*binomial(n,3),n=0..41)]; # Zerinvary Lajos, Nov 24 2006
  • Mathematica
    Table[n^3 - 3n^2 + 2n, {n, 0, 42}]
    Table[FactorialPower[n, 3], {n, 0, 42}] (* Arkadiusz Wesolowski, Oct 29 2012 *)
  • PARI
    a(n)=n*(n-1)*(n-2)
    
  • Sage
    [n*(n-1)*(n-2) for n in range(40)] # G. C. Greubel, Feb 11 2019

Formula

a(n) = 6*A000292(n-2).
a(n) = Sum_{i=1..n} polygorial(3,i) where polygorial(3,i) = A028896(i-1). - Daniel Dockery (peritus(AT)gmail.com), Jun 16 2003
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 6, n > 2. - Zak Seidov, Feb 09 2006
G.f.: 6*x^2/(1-x)^4.
a(-n) = -a(n+2).
1/6 + 3/24 + 5/60 + ... = Sum_{k>=1} (2*k-1)/(k*(k+1)*(k+2)) = 3/4. [Jolley Eq. 213]
a(n+1) = n^3 - n. - Mohammad K. Azarian, Jul 26 2007
E.g.f.: x^3*exp(x). - Geoffrey Critzer, Feb 08 2009
If the first 0 is eliminated, a(n) = floor(n^5/(n^2+1)). - Gary Detlefs, Feb 11 2010
1/6 + 1/24 + 1/60 + ... = Sum_{n>=1} 1/(n*(n+1)*(n+2)) = 1/4. - Mohammad K. Azarian, Dec 29 2010
a(0) = 0, a(n) = a(n-1) + 3*(n-1)*(n-2). - Jean-François Alcover, Jan 08 2013
(a(n+1) - a(n))/6 = A000217(n-2) for n > 0. - J. M. Bergot, Jul 30 2013
Partial sums of A028896. - R. J. Mathar, Aug 28 2014
1/6 + 1/24 + 1/60 + ... + 1/(n*(n+1)*(n+2)) = n*(n+3)/(4*(n+1)*(n+2)). - Christina Steffan, Jul 20 2015
a(n+2)^2 = A005563(n)^3 + A005563(n)^2. - Bruno Berselli, May 03 2018
a(n)*a(n+1) + A000096(n-3)^2 = m^2 (a perfect square), m = ((a(n)+a(n+1))/2)-n. - Ezhilarasu Velayutham, May 21 2019
Sum_{n>=3} (-1)^(n+1)/a(n) = 2*log(2) - 5/4. - Amiram Eldar, Jul 02 2020
For n >= 3, (a(n) + (a(n) + (a(n) + ...)^(1/3))^(1/3))^(1/3) = n - 1. - Paolo Xausa, Apr 09 2022

A190136 Largest prime factor of n*(n+1)*(n+2)*(n+3).

Original entry on oeis.org

3, 5, 5, 7, 7, 7, 7, 11, 11, 13, 13, 13, 13, 17, 17, 19, 19, 19, 19, 23, 23, 23, 23, 13, 13, 29, 29, 31, 31, 31, 31, 17, 17, 37, 37, 37, 37, 41, 41, 43, 43, 43, 43, 47, 47, 47, 47, 17, 17, 53, 53, 53, 53, 19, 29, 59, 59, 61, 61, 61, 61, 31, 13, 67, 67, 67
Offset: 1

Views

Author

Reinhard Zumkeller, May 07 2011

Keywords

Comments

a(n) > 11 for n > 9;
a(A086801(n)) = A000040(n) for n > 2.
It follows from Størmer's theorem that lim inf a(n) = infinity, and in fact a(n) >> log log n. - Charles R Greathouse IV, Feb 19 2013

Examples

			Numbers m <= 10^6 such that a(m) = p:
p=13: 10, 11, 12, 13, 24, 25, 63;
p=17: 14, 15, 32, 33, 48, 49;
p=19: 16, 17, 18, 19, 54, 75, 168;
p=23: 20, 21, 22, 23, 207, 322;
p=29: 26, 27, 55, 114;
p=31: 28, 29, 30, 31, 62, 90, 152, 153, 340, 493, 1518;
p=37: 34, 35, 36, 37, 74, 184, 405;
p=41: 38, 39, 123, 245, 285, 286, 287, 492, 1023, 1517, 1680;
p=43: 40, 41, 42, 43, 84, 85, 169, 258, 341, 342, 558, 1330, 1331, 2106, 5289, 10878;
p=47: 44, 45, 46, 47, 91, 92, 93, 185, 186, 187, 374, 375, 702, 986, 987, 17575;
p=53: 50, 51, 52, 53, 159, 368, 369, 527, 845, 899, 900, 1375;
p=59: 56, 57, 115, 116, 117, 118, 174, 294, 528, 529, 530, 648, 943, 1885, 6783;
p=61: 58, 59, 60, 61, 119, 120, 121, 122, 182, 183, 242, 243, 244, 549, 608, 609, 1034, 1218, 1219, 1767, 1768, 2013, 2254, 2622;
p=67: 64, 65, 66, 67, 132, 133, 735, 1271, 1272, 1273, 2208, 2277, 3885, 4958, 5828, 5829;
p=71: 68, 69, 140, 141, 142, 284, 423, 424, 494, 636, 637, 779, 780, 781, 3477, 3478, 3549, 3550, 4899;
p=73: 70, 71, 72, 73, 143, 144, 145, 219, 363, 510, 728, 729, 803, 1022, 1239, 1679, 2772, 70224;
p=79: 76, 77, 78, 79, 158, 234, 235, 472, 473, 474, 550, 867, 868, 1024, 1104, 1419, 2209, 2448, 2923, 3476, 3869, 4898, 5290, 7502, 46136, 70150;
p=83: 80, 81, 82, 83, 246, 247, 413, 495, 663, 664, 1078, 1159, 1824, 2736, 3483, 4232, 4896, 4897, 7137, 8214, 12614, 36517, 97524;
p=89: 86, 87, 88, 89, 175, 264, 265, 354, 531, 710, 711, 712, 798, 1245, 1332, 2847, 4895, 5073, 6318, 18423, 28302, 29279;
p=97: 94, 95, 96, 97, 288, 289, 483, 580, 581, 582, 774, 873, 1064, 1065, 1455, 2132, 2133, 3007, 3975, 4556, 4557, 6496, 6497, 6887, 7564, 7565, 7566, 13869, 17457.
		

References

  • Paulo Ribenboim, Galimatias Arithmeticae (Chap 11), in 'My Numbers, My Friends', Springer-Verlag 2000 NY, page 345.
  • J. J. Sylvester, "On arithmetical series", Messenger of Mathematics 21 (1892), pp. 1-19 and 87-120.
  • M. Faulkner, "On a theorem of Sylvester and Schur", J. London Math. Soc. 41:1 (1966), pp. 107-110.

Crossrefs

Programs

  • Haskell
    a190136 n = maximum $ map a006530 [n..n+3]
    
  • Mathematica
    Table[FactorInteger[Times@@(n+Range[0,3])][[-1,1]],{n,70}] (* Harvey P. Dale, Mar 19 2018 *)
  • PARI
    gpf(n)=vecmax(factor(n)[,1])
    a(n)=my(p=precprime(n+3));if(pCharles R Greathouse IV, Feb 19 2013

Formula

a(n) = max{gpf(n), gpf(n+1), gpf(n+2), gpf(n+3)} = gpf(A052762(n+3)) with gpf = A006530, greatest prime factor.
a(n) > 47 for n > 17575. - Charles R Greathouse IV, Feb 19 2013

A199423 Greatest prime factor of n and 2*n+1.

Original entry on oeis.org

3, 5, 7, 3, 11, 13, 7, 17, 19, 7, 23, 5, 13, 29, 31, 11, 17, 37, 19, 41, 43, 11, 47, 7, 17, 53, 11, 19, 59, 61, 31, 13, 67, 23, 71, 73, 37, 19, 79, 5, 83, 17, 43, 89, 13, 31, 47, 97, 11, 101, 103, 13, 107, 109, 37, 113, 23, 29, 59, 11, 61, 31, 127, 43, 131, 19
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[Flatten[FactorInteger[{n,2 n+1}],1][[All,1]]],{n,70}] (* Harvey P. Dale, Mar 25 2020 *)
  • PARI
    gpf(n)=local(ps);if(n<2,n,ps=factor(n)[,1]~;ps[#ps])
    vector(80,n,gpf(n*(2*n+1)))

Formula

a(n) = A006530(A014105(n)).

A093075 Indicating the neighbor with a greater greatest prime factor.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 0, -1, 1, 1, 0, 1, 0, -1, -1, 1, 0, 1, 0, -1, 1, 1, 0, -1, 1, 0, -1, 1, 0, 1, 0, -1, 1, 0, -1, 1, 0, -1, -1, 1, 0, 1, 0, -1, 1, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 1, 1, 0, 1, 0, -1, -1, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, -1, 0, -1, 1, 0, -1, 1, 1, 0, -1, 1, 0, -1, 1, 0, -1
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 18 2004

Keywords

Comments

A093074(n)=A006530(n+a(n)); A006530(n)<=A006530(n+a(n)).

A103359 T(n,k) = Max{p: prime p divides m where n-k<=m<=n+k}, triangle read by rows: 0<=k

Original entry on oeis.org

1, 2, 3, 3, 3, 5, 2, 5, 5, 7, 5, 5, 7, 7, 7, 3, 7, 7, 7, 7, 11, 7, 7, 7, 7, 11, 11, 13, 2, 7, 7, 11, 11, 13, 13, 13, 3, 5, 11, 11, 13, 13, 13, 13, 17, 5, 11, 11, 13, 13, 13, 13, 17, 17, 19, 11, 11, 13, 13, 13, 13, 17, 17, 19, 19, 19, 3, 13, 13, 13, 13, 17, 17, 19, 19, 19, 19, 23, 13, 13
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 20 2005

Keywords

Comments

T(n,0) = A006530(n); T(n,1) = A093074(n) for n>1;
T(n,n-1) = A060265(n) for n>1.

Examples

			Triangle begins:
1;
2, 3;
3, 3, 5;
2, 5, 5, 7;
5, 5, 7, 7, 7;
...
		

Programs

  • Mathematica
    T[n_, k_] := FactorInteger[#][[-1, 1]]& /@ Range[n-k, n+k] // Max;
    Table[T[n, k], {n, 1, 13}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Sep 19 2021 *)

A125604 Minimum of the largest prime factors of a number and its two neighbors.

Original entry on oeis.org

2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 5, 2, 2, 2, 3, 3, 5, 5, 7, 3, 3, 3, 3, 3, 3, 5, 5, 2, 2, 2, 7, 3, 3, 3, 13, 5, 5, 5, 7, 7, 5, 5, 5, 3, 3, 3, 5, 5, 13, 3, 3, 3, 7, 7, 19, 5, 5, 5, 7, 2, 2, 2, 11, 11, 17, 7, 7, 3, 3, 3, 5, 5, 5, 11, 11, 5, 3, 3, 3, 7, 7, 7, 17, 11, 11, 5, 5, 5, 13, 23, 19, 3, 3, 3, 7, 5, 5
Offset: 3

Views

Author

Carlos Alves, Nov 27 2006

Keywords

Examples

			a(93) = min{lpf(92),lpf(93),lpf(94)} = min{23,31,47} = 23.
		

Crossrefs

Programs

  • Maple
    LPF:= map(t -> max(numtheory:-factorset(t)), [$2..101]):
    [seq](min(LPF[i..i+2]),i=1..nops(LPF)-2); # Robert Israel, Jun 16 2025
  • Mathematica
    LPF = FactorInteger[ # ][[ -1, 1]] &; Map[Min[{LPF[ # - 1], LPF[ # ], LPF[ # + 1]}] &, Range[3, 200]]
    Min/@Partition[Table[FactorInteger[n][[-1,1]],{n,110}],3,1] (* Harvey P. Dale, May 25 2015 *)
  • PARI
    a(n) = my(lpf(k)=vecmax(factor(k)[, 1])); vecmin([lpf(n-1), lpf(n), lpf(n+1)]); \\ Ruud H.G. van Tol, Aug 15 2024
    
  • Python
    from sympy import primefactors
    def a(n): return min(map(lambda n: primefactors(n)[-1], range(n-1,n+2))) # David Radcliffe, Jun 16 2025

Formula

a(n) = min{lpf(n-1),lpf(n),lpf(n+1)}, where lpf is the largest prime factor: lpf(k) = A006530(k).

A321069 Greatest prime factor of n^3+2.

Original entry on oeis.org

3, 5, 29, 11, 127, 109, 23, 257, 43, 167, 43, 173, 733, 1373, 307, 683, 983, 2917, 2287, 4001, 157, 71, 283, 223, 5209, 47, 127, 3659, 24391, 587, 9931, 113, 433, 6551, 809, 569, 307, 27437, 433, 10667, 439, 239, 1559, 223, 91127, 16223, 4153, 457, 39217, 62501
Offset: 1

Views

Author

Keywords

Crossrefs

Greatest prime factors of polynomials: A006530 (n), A076565 (2n+1), A076566 (3n+3), A076567 (4n+6), A164314 (n^2-2), A076605 (n^2-1), A014442 (n^2+1), A069902 (n^2+n), A074399 (n^2+n), A199423 (2n^2+n), A089619 (2n^2+2n+1), A037464 (4n^2-1), A253254 (9n^2-7n), A093074 (n^3-n), A081257 (n^3-1), A081256 (n^3+1), A321069(n^3+2), A281793 (n^3+n^2+n+1), A281793 (n^4-1), A096172 (n^4+1), A190136 (n^4 + 6n^3 + 11n^2 + 6n), A140538 (2n^4+1), A240548 (n^5+1), A281794 (n^5+n^3+n^2+1), A240549 (n^6+1), A240550 (n^7+1), A240551 (n^8+1), A240552 (n^9+1), A240553 (n^10+1).

Programs

  • Magma
    [Maximum(PrimeDivisors(n^3 + 2)): n in [1..60]]; // Vincenzo Librandi, Oct 27 2018
    
  • Mathematica
    Table[FactorInteger[n^3 + 2] [[-1, 1]], {n, 80}] (* Vincenzo Librandi, Oct 27 2018 *)
  • PARI
    a(n) = vecmax(factor(n^3+2)[,1]); \\ Michel Marcus, Oct 27 2018
Showing 1-7 of 7 results.