cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A069904 Number of prime factors of n-th triangular number (with multiplicity).

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 3, 4, 3, 2, 3, 3, 2, 3, 5, 4, 3, 3, 3, 4, 3, 2, 4, 5, 3, 4, 5, 3, 3, 3, 5, 6, 3, 3, 5, 4, 2, 3, 5, 4, 3, 3, 3, 5, 4, 2, 5, 6, 4, 4, 4, 3, 4, 5, 5, 5, 3, 2, 4, 4, 2, 4, 8, 7, 4, 3, 3, 4, 4, 3, 5, 5, 2, 4, 5, 4, 4, 3, 5, 8, 5, 2, 4, 5, 3, 3, 5, 4, 4, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 10 2002

Keywords

Examples

			A000217(8) = 8*(8+1)/2 = 36 = 2*2*3*3, therefore a(8) = 4.
		

Crossrefs

Programs

Formula

a(n) = A001222(A000217(n)).
From Antti Karttunen, Oct 07 2017: (Start)
a(n) = (A001222(n)+A001222(n+1))-1.
a(n) = A001222(A278253(n)). (End)
From Alois P. Heinz, Aug 05 2019: (Start)
a(n) = 2 <=> n in { A164977 }.
a(n) = 3 <=> n in { A108815 }.
a(n) = 4 <=> n in { A114435 }.
a(n) = 5 <=> n in { A114436 }.
a(n) = 6 <=> n in { A114437 }.
a(n) = 7 <=> n in { A240527 }.
a(n) = 8 <=> n in { A240528 }.
a(n) = 9 <=> n in { A240529 }.
a(n) = 10 <=> n im { A101745 }. (End)

A074399 a(n) is the largest prime divisor of n(n+1).

Original entry on oeis.org

2, 3, 3, 5, 5, 7, 7, 3, 5, 11, 11, 13, 13, 7, 5, 17, 17, 19, 19, 7, 11, 23, 23, 5, 13, 13, 7, 29, 29, 31, 31, 11, 17, 17, 7, 37, 37, 19, 13, 41, 41, 43, 43, 11, 23, 47, 47, 7, 7, 17, 17, 53, 53, 11, 11, 19, 29, 59, 59, 61, 61, 31, 7, 13, 13, 67, 67, 23, 23, 71, 71, 73, 73, 37, 19
Offset: 1

Views

Author

N. J. A. Sloane, Nov 29 2002

Keywords

Comments

Størmer shows that a(n) tends to infinity with n. Pólya generalized this result to other polynomials.
Kotov shows that a(n) >> log log n. - Charles R Greathouse IV, Mar 26 2012
Keates and Schinzel give effective constants for the above; in particular the latter shows that lim inf a(n)/log log n >= 2/7. - Charles R Greathouse IV, Nov 12 2012
Erdős conjectures ("on very flimsy probabilistic grounds") that for every e > 0, a(n) < (log n)^(2+e) infinitely often, while a(n) < (log n)^(2-e) only finitely often. - Charles R Greathouse IV, Mar 11 2015

References

  • S. V. Kotov, The greatest prime factor of a polynomial (in Russian), Mat. Zametki 13 (1973), pp. 515-522.
  • K. Mahler, Über den größten Primteiler spezieller Polynome zweiten Grades, Archiv for mathematik og naturvidenskab 41:6 (1934), pp. 3-26.
  • Georg Pólya, Zur arithmetischen Untersuchung der Polynome, Math. Zeitschrift 1 (1918), pp. 143-148.

Crossrefs

With A037464, the bisections of A076605.
Essentially the same as A069902.
Positions of primes <= p: A085152 (p=5), A085153 (p=7), A252494 (p=11), A252493 (p=13), A252492 (p=17).
Last position of each prime: A002072.

Programs

  • Mathematica
    Table[ Last[ Table[ # [[1]]] & /@ FactorInteger[n^2 - 1]], {n, 3, 160, 2}]
    Table[FactorInteger[n(n+1)][[-1,1]],{n,80}] (* Harvey P. Dale, Sep 28 2021 *)
  • PARI
    gpf(n)=my(f=factor(n)[,1]); f[#f]
    a(n)=if(n<3, n+1, max(gpf(n),gpf(n+1))) \\ Charles R Greathouse IV, Sep 14 2015

Formula

a(n) = Max (A006530(2n), A006530(2n+2)).
Pasten proves that a(n) >> (log log n)^2/(log log log n), see Corollary 1.5. - Charles R Greathouse IV, Oct 14 2024

Extensions

Extended by Robert G. Wilson v, Dec 02 2002

A069901 Smallest prime factor of n-th triangular number.

Original entry on oeis.org

1, 3, 2, 2, 3, 3, 2, 2, 3, 5, 2, 2, 7, 3, 2, 2, 3, 3, 2, 2, 3, 11, 2, 2, 5, 3, 2, 2, 3, 3, 2, 2, 3, 5, 2, 2, 19, 3, 2, 2, 3, 3, 2, 2, 3, 23, 2, 2, 5, 3, 2, 2, 3, 3, 2, 2, 3, 29, 2, 2, 31, 3, 2, 2, 3, 3, 2, 2, 3, 5, 2, 2, 37, 3, 2, 2, 3, 3, 2, 2, 3, 41, 2, 2, 5, 3, 2, 2, 3, 3, 2, 2, 3, 5, 2, 2, 7, 3, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 10 2002

Keywords

Comments

Or, a(1) = 1, then the smallest nontrivial k (>1) which divides the sum of (next n) numbers from k+1 to k+n or smallest k > 1 that divides nk + n(n+1)/2. - Amarnath Murthy, Sep 22 2002. For example, a(7) = 4, which is the smallest nontrivial number that divides the sum 5+6+...+11, of 7 numbers.

Examples

			A000217(10) = 10*(10+1)/2 = 55 = 5*11, therefore a(10) = 5.
		

Crossrefs

Programs

  • Mathematica
    FactorInteger[#][[1,1]]&/@Accumulate[Range[100]] (* Harvey P. Dale, Apr 05 2014 *)
  • PARI
    a(n) = if (n==1, 1, vecmin(factor(n*(n+1)/2)[,1]));

Formula

a(n) = A020639(A000217(n)).
a(4*k-1) = a(4*k) = 2.
From Zak Seidov, Jun 06 2013: (Start)
a(n) = 3 for n = {2, 5, 6, 9} + 12*k;
a(n) = 5 for n = {10, 25, 34, 49} + 60*k;
a(n) = 7 for n = {13, 97, 118, 133, 181, 202, 217, 238, 286, 301, 322, 406} + 420*k, etc. (End)

Extensions

Edited by N. J. A. Sloane, Sep 06 2008 at the suggestion of Franklin T. Adams-Watters

A069903 Number of distinct prime factors of n-th triangular number.

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 4, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 4, 3, 2, 3, 4, 3, 3, 3, 3, 4, 3, 2, 3, 3, 2, 3, 4, 3, 2, 3, 4, 4, 3, 2, 4, 4, 2, 3, 3, 3, 4, 3, 3, 4, 4, 3, 3, 3, 2, 3, 4, 4, 4, 3, 3, 3, 2, 2, 4, 5, 3, 3, 4, 3, 3, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 10 2002

Keywords

Examples

			A000217(11) = 11*(11+1)/2 = 66 = 2*3*11, therefore a(11) = 3.
		

Crossrefs

Programs

Formula

a(n) = A001221(A000217(n)).
Sum_{k=1..n} a(k) = 2 * n * (log(log(n)) + B - 1/4) + O(n/log(n)), where B is Mertens's constant (A077761). - Amiram Eldar, Sep 21 2024

A164314 Largest prime factor of n^2 - 2.

Original entry on oeis.org

2, 7, 7, 23, 17, 47, 31, 79, 7, 17, 71, 167, 97, 223, 127, 41, 23, 359, 199, 439, 241, 31, 41, 89, 337, 727, 23, 839, 449, 137, 73, 1087, 577, 1223, 647, 1367, 103, 31, 47, 73, 881, 1847, 967, 17, 151, 2207, 1151, 2399, 1249, 113, 193, 401, 47, 3023, 1567, 191
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> max(numtheory[factorset](n^2-2)):
    seq(a(n), n=2..60);  # Alois P. Heinz, Jul 22 2017
  • Mathematica
    Table[FactorInteger[n^2 - 2][[-1, 1]], {n, 2, 57}] (* Michael De Vlieger, Jul 22 2017 *)
  • PARI
    a(n) = vecmax(factor(n^2-2)[,1]); \\ Michel Marcus, Jul 22 2017

Formula

a(n) = A006530(A008865(n)).

Extensions

Offset corrected by R. J. Mathar, Aug 21 2009

A253254 Largest prime factor of the n-th 11-gonal number.

Original entry on oeis.org

11, 5, 29, 19, 47, 7, 13, 37, 83, 23, 101, 13, 17, 5, 137, 73, 31, 41, 173, 13, 191, 23, 19, 109, 227, 59, 7, 127, 263, 31, 281, 29, 23, 11, 317, 163, 67, 43, 353, 181, 53, 43, 389, 199, 37, 47, 17, 31, 443, 113, 461, 53, 479, 61, 71, 23, 103, 131, 41, 271, 31, 7, 569, 17, 587, 149, 17, 307, 89, 79
Offset: 2

Views

Author

Gionata Neri, May 31 2015

Keywords

Comments

a(A024907(n)) = A061238(n).

Crossrefs

Cf. A006530, A051682, A069902 (similar, with triangular numbers).

Programs

  • Maple
    gpf:= n -> max(numtheory:-factorset(n));
    seq(gpf(n*(9*n-7)/2),n=2..100); # Robert Israel, Jun 24 2015
  • PARI
    a(n) = my(f = factor(n*(9*n-7)/2)); f[#f~,1]; \\ Michel Marcus, May 31 2015

Formula

a(n) = A006530(A051682(n)).

A321069 Greatest prime factor of n^3+2.

Original entry on oeis.org

3, 5, 29, 11, 127, 109, 23, 257, 43, 167, 43, 173, 733, 1373, 307, 683, 983, 2917, 2287, 4001, 157, 71, 283, 223, 5209, 47, 127, 3659, 24391, 587, 9931, 113, 433, 6551, 809, 569, 307, 27437, 433, 10667, 439, 239, 1559, 223, 91127, 16223, 4153, 457, 39217, 62501
Offset: 1

Views

Author

Keywords

Crossrefs

Greatest prime factors of polynomials: A006530 (n), A076565 (2n+1), A076566 (3n+3), A076567 (4n+6), A164314 (n^2-2), A076605 (n^2-1), A014442 (n^2+1), A069902 (n^2+n), A074399 (n^2+n), A199423 (2n^2+n), A089619 (2n^2+2n+1), A037464 (4n^2-1), A253254 (9n^2-7n), A093074 (n^3-n), A081257 (n^3-1), A081256 (n^3+1), A321069(n^3+2), A281793 (n^3+n^2+n+1), A281793 (n^4-1), A096172 (n^4+1), A190136 (n^4 + 6n^3 + 11n^2 + 6n), A140538 (2n^4+1), A240548 (n^5+1), A281794 (n^5+n^3+n^2+1), A240549 (n^6+1), A240550 (n^7+1), A240551 (n^8+1), A240552 (n^9+1), A240553 (n^10+1).

Programs

  • Magma
    [Maximum(PrimeDivisors(n^3 + 2)): n in [1..60]]; // Vincenzo Librandi, Oct 27 2018
    
  • Mathematica
    Table[FactorInteger[n^3 + 2] [[-1, 1]], {n, 80}] (* Vincenzo Librandi, Oct 27 2018 *)
  • PARI
    a(n) = vecmax(factor(n^3+2)[,1]); \\ Michel Marcus, Oct 27 2018

A233004 Pt(n) mod n!, where Pt(n) is product of first n positive triangular numbers (A000217).

Original entry on oeis.org

0, 1, 0, 12, 60, 540, 0, 20160, 181440, 907200, 19958400, 359251200, 1556755200, 32691859200, 0, 10461394944000, 177843714048000, 1600593426432000, 60822550204416000, 608225502044160000, 38318206628782080000, 702500454861004800000, 12926008369442488320000
Offset: 1

Views

Author

Alex Ratushnyak, Dec 03 2013

Keywords

Comments

Pt(n) = n!*(n+1)! / 2^n.
Pt(n) mod n! = 0 if and only if 2^n divides (n+1)!, that is, n+1 is a power of 2. Thus indices of zeros are of the form 2^k-1.

Crossrefs

Cf. A006472 (triangular factorial, essentially equal to Pt(n)).
Cf. A067667 (Pt(n)/n! for n's of the form 2^k-1).

Programs

  • Python
    f=t=1
    for n in range(1,33):
      t*=n*(n+1)//2
      f*=n
      print(t%f, end=', ')
Showing 1-8 of 8 results.