cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A242488 Triangle read by rows in which row n lists numbers k such that the greatest prime factor of k^2 - 2 is A038873(n), the n-th prime not congruent to 3 or 5 mod 8.

Original entry on oeis.org

2, 3, 4, 10, 6, 11, 45, 108, 5, 18, 28, 74, 156, 235, 8, 23, 39, 116, 1201, 17, 24, 58, 147, 304, 550, 2272, 390050, 7, 40, 54, 87, 101, 181, 557, 1558, 43764, 314766, 12, 59, 130, 225, 414, 1077, 1124, 2686, 3420, 4035, 32, 41, 178, 333, 698, 844, 1638, 4567, 15362, 364384
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 16 2014

Keywords

Comments

From Andrew Howroyd, Dec 22 2024: (Start)
For any prime p, there are finitely many x such that x^2 - 2 has p as its largest prime factor.
The Filip Najman data file gives all 537 numbers x such that x^2 - 2 has no prime factor greater than 199. This includes a value for x = 1 which is not included here. (End)

Examples

			Triangle of numbers k such that p is the greatest prime factor of k^2 - 2:
p\k  |  1 |  2 |  3  |  4  |  5   |  6   |  7   |  >= 8
------------------------------------------------------------------------
   2 |  2 |    |     |     |      |      |      |
   7 |  3 |  4 |  10 |     |      |      |      |
  17 |  6 | 11 |  45 | 108 |      |      |      |
  23 |  5 | 18 |  28 |  74 |  156 |  235 |      |
  31 |  8 | 23 |  39 | 116 | 1201 |      |      |
  41 | 17 | 24 |  58 | 147 |  304 |  550 | 2272 | 390050;
  47 |  7 | 40 |  54 |  87 |  101 |  181 |  557 | 1558, 43764, 314766;
  71 | 12 | 59 | 130 | 225 |  414 | 1077 | 1124 | 2686, 3420, 4035;
  73 | 32 | 41 | 178 | 333 |  698 |  844 | 1638 | 4567, 15362, 364384;
  ...
6 is a term of row 3 because (6^2 - 2)/17 = 2 and 2 < 17;
11 is a term of row 3 because (11^2 - 2)/17 = 7 and 7 < 17;
45 is a term of row 3 because (45^2 - 2)/17^2 = 7 and 7 < 17;
108 is a term of row 3 because (108^2 - 2)/17 = 686 = 2*7^3 and 7 < 17.
		

Crossrefs

Cf. A038873, A164314, A059770 (first terms for n>1), A185396 (last terms), A379348 (row lengths).
Cf. A223701.

Extensions

Converted to triangle by Andrew Howroyd, Dec 22 2024

A363102 Denominator of the continued fraction 1/(2-3/(3-4/(4-5/(...(n-1)-n/(-2))))).

Original entry on oeis.org

7, 7, 23, 17, 47, 31, 79, 7, 17, 71, 167, 97, 223, 127, 41, 23, 359, 199, 439, 241, 31, 41, 89, 337, 727, 1, 839, 449, 137, 73, 1087, 577, 1223, 647, 1367, 103, 1, 47, 73, 881, 1847, 967, 1, 151, 2207, 1151, 2399, 1249, 113, 193, 401, 1, 3023, 1567, 191, 41, 71, 257, 3719, 113, 3967, 89, 103, 311
Offset: 3

Views

Author

Mohammed Bouras, May 19 2023

Keywords

Comments

Conjecture 1: The sequence contains only 1's and primes.
Conjecture 2: All prime numbers appear either twice (same as A356247 and A357127) or three times.
Similar terms of A164314.
Conjecture: Record values correspond to A028871(m), m > 1. - Bill McEachen, Mar 06 2024
a(n) = 1 positions appear to correspond to A060515(m), m > 2. - Bill McEachen, Aug 05 2024

Examples

			a(5) = (5^2 - 2)/gcd(5^2 - 2, 2*A051403(5-3) + 5*A051403(5-4))= 23.
a(6) = a(11) = 6 + 11 = 17.
a(7) = a(40) = 7 + 40 = 47.
		

Crossrefs

Programs

  • PARI
    a051403(n) = (n+2)*sum(k=0, n, k!)/2;
    a(n) = (n^2 - 2)/gcd(n^2 - 2, 2*a051403(n-3) + n*a051403(n-4)); \\ Michel Marcus, May 24 2023

Formula

a(n) = (n^2 - 2)/gcd(n^2 - 2, 2*A051403(n-3) + n*A051403(n-4)).
a(n) = A164314(n) if A164314(n) > n.
If a(n) = a(m) and n < m < a(n), then a(n) = n + m.

A321069 Greatest prime factor of n^3+2.

Original entry on oeis.org

3, 5, 29, 11, 127, 109, 23, 257, 43, 167, 43, 173, 733, 1373, 307, 683, 983, 2917, 2287, 4001, 157, 71, 283, 223, 5209, 47, 127, 3659, 24391, 587, 9931, 113, 433, 6551, 809, 569, 307, 27437, 433, 10667, 439, 239, 1559, 223, 91127, 16223, 4153, 457, 39217, 62501
Offset: 1

Views

Author

Keywords

Crossrefs

Greatest prime factors of polynomials: A006530 (n), A076565 (2n+1), A076566 (3n+3), A076567 (4n+6), A164314 (n^2-2), A076605 (n^2-1), A014442 (n^2+1), A069902 (n^2+n), A074399 (n^2+n), A199423 (2n^2+n), A089619 (2n^2+2n+1), A037464 (4n^2-1), A253254 (9n^2-7n), A093074 (n^3-n), A081257 (n^3-1), A081256 (n^3+1), A321069(n^3+2), A281793 (n^3+n^2+n+1), A281793 (n^4-1), A096172 (n^4+1), A190136 (n^4 + 6n^3 + 11n^2 + 6n), A140538 (2n^4+1), A240548 (n^5+1), A281794 (n^5+n^3+n^2+1), A240549 (n^6+1), A240550 (n^7+1), A240551 (n^8+1), A240552 (n^9+1), A240553 (n^10+1).

Programs

  • Magma
    [Maximum(PrimeDivisors(n^3 + 2)): n in [1..60]]; // Vincenzo Librandi, Oct 27 2018
    
  • Mathematica
    Table[FactorInteger[n^3 + 2] [[-1, 1]], {n, 80}] (* Vincenzo Librandi, Oct 27 2018 *)
  • PARI
    a(n) = vecmax(factor(n^3+2)[,1]); \\ Michel Marcus, Oct 27 2018
Showing 1-3 of 3 results.