A075392 Duplicate of A069901.
1, 3, 2, 2, 3, 3, 2, 2, 3, 5, 2, 2, 7, 3, 2, 2, 3, 3, 2, 2, 3, 11, 2, 2, 5, 3, 2, 2, 3, 3, 2, 2, 3, 5, 2
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
A000217(8) = 8*(8+1)/2 = 36 = 2*2*3*3, therefore a(8) = 4.
Array[Plus@@Last/@FactorInteger[ #*(#+1)/2]&,33] (* Vladimir Joseph Stephan Orlovsky, Feb 28 2010 *)
A069904(n) = bigomega((n*(n+1))/2); \\ Antti Karttunen, Oct 07 2017
A000217(9) = 9*(9+1)/2 = 45 = 3*3*5, therefore a(9) = 5.
PrimeFactors[n_]:=Flatten[Table[ #[[1]],{1}]&/@FactorInteger[n]]; Table[PrimeFactors[n*(n-1)/2][[ -1]],{n,2,6!}] (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *) (* Second program: *) Array[FactorInteger[PolygonalNumber[#]][[-1, 1]] &, 66] (* Michael De Vlieger, Sep 14 2023 *)
\\ written for a(n), n >= 2 a(n)=vecmax(factor(n*(n+1)/2)[,1]) \\ M. F. Hasler, May 02 2015
A000217(11) = 11*(11+1)/2 = 66 = 2*3*11, therefore a(11) = 3.
PrimeNu[#]&/@Accumulate[Range[90]] (* Harvey P. Dale, Oct 06 2016 *)
a(n) = omega(n*(n+1)/2); \\ Michel Marcus, Feb 05 2021
a(n)=onega(n/gcd(n,2))+omega((n+1)/gcd(n+1)) \\ Charles R Greathouse IV, Sep 21 2024
FactorInteger[#][[1, 1]]&/@Select[Accumulate[Range[200]], OddQ] (* Harvey P. Dale, Jul 30 2016 *)
a(n) = if(n == 1, 1, factor((2*n-1)*(2*n-1-(-1)^n)/2)[1,1]); \\ Amiram Eldar, May 16 2025
3rd triangular number, A000217(3) = 6 = 2*3, 2nd triangular number, A000217(2) = 3, 10th triangular number, A000217(10) = 55 = 5*11, 13th triangular number, A000217(13) = 91 =7*13.
nn = 50; t = Table[0, {nn}]; tri = 1; n = 1; found = 0; While[found < nn, n++; tri = tri + n; p = FactorInteger[tri][[1, 1]]; pi = PrimePi[p]; If[pi <= nn && t[[pi]] == 0, t[[pi]] = n; found++]]; t (* T. D. Noe, Jun 07 2013 *)
Comments