cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A164977 Numbers m such that the set {1..m} has only one nontrivial decomposition into subsets with equal element sum.

Original entry on oeis.org

3, 4, 5, 6, 10, 13, 22, 37, 46, 58, 61, 73, 82, 106, 157, 166, 178, 193, 226, 262, 277, 313, 346, 358, 382, 397, 421, 457, 466, 478, 502, 541, 562, 586, 613, 661, 673, 718, 733, 757, 838, 862, 877, 886, 982, 997, 1018, 1093, 1153, 1186, 1201, 1213, 1237, 1282
Offset: 1

Views

Author

Alois P. Heinz, Sep 03 2009

Keywords

Comments

Numbers m such that the triangular number T(m) = m*(m+1)/2 has exactly two divisors >= m.
Also numbers m such that m*(m+1)/2 is the product of two primes.
Contains all numbers in A005383. - Harry Richman, Jan 09 2025
Contains all numbers in A077065. - Alois P. Heinz, Jan 19 2025

Examples

			10 is in the sequence, because there is only one nontrivial decomposition of {1..10} into subsets with equal element sum: {1,10}, {2,9}, {3,8}, {4,7}, {5,6}; 11|55.
13 is in the sequence with decomposition of {1..13}: {1,12}, {2,11}, {3,10}, {4,9}, {5,8}, {6,7}, {13}; 13|91.
		

Crossrefs

Cf. A005383, A077065 (distinct subsequences).

Programs

  • Maple
    a:= proc(n) option remember; local k;
          for k from 1+ `if`(n=1, 2, a(n-1))
          while not (andmap(isprime, [k, (k+1)/2]) or
                     andmap(isprime, [k+1, k/2]))
          do od; k
        end:
    seq(a(n), n=1..100);
  • Mathematica
    Select[Range@1304, PrimeOmega[#] + PrimeOmega[# + 1] == 3 &] (* Robert G. Wilson v, Jun 28 2010 and updated Sep 21 2018 *)
  • PARI
    is(n)=if(isprime(n),bigomega(n+1)==2, isprime(n+1) && bigomega(n)==2) \\ Charles R Greathouse IV, Sep 08 2015
    
  • PARI
    is(n)=if(n%2, isprime((n+1)/2) && isprime(n), isprime(n/2) && isprime(n+1)) \\ Charles R Greathouse IV, Mar 16 2022
    
  • PARI
    list(lim)=my(v=List()); forprime(p=3,lim, if(isprime((p+1)/2), listput(v,p))); forprime(p=5,lim+1, if(isprime(p\2), listput(v,p-1))); Set(v) \\ Charles R Greathouse IV, Mar 16 2022

Formula

{ m : A035470(m) = 2 }.
{ m : A164978(m) = 2 }.
{ m : |{d|m*(m+1)/2 : d>=m}| = 2 }.
{ m : m*(m+1)/2 in {A068443} }.
{ m : m*(m+1)/2 in {A001358} }.
{ m : A069904(m) = 2 }.
{ m : A001222(n) + A001222(n+1) = 3 }. - Alois P. Heinz, Jan 08 2022
{ A005383 } union { A077065 }. - Alois P. Heinz, Jan 19 2025

A069902 Largest prime factor of n(n+1)/2, the n-th triangular number.

Original entry on oeis.org

1, 3, 3, 5, 5, 7, 7, 3, 5, 11, 11, 13, 13, 7, 5, 17, 17, 19, 19, 7, 11, 23, 23, 5, 13, 13, 7, 29, 29, 31, 31, 11, 17, 17, 7, 37, 37, 19, 13, 41, 41, 43, 43, 11, 23, 47, 47, 7, 7, 17, 17, 53, 53, 11, 11, 19, 29, 59, 59, 61, 61, 31, 7, 13, 13, 67
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 10 2002

Keywords

Comments

Essentially the same as A074399, which has many comments, references and links.

Examples

			A000217(9) = 9*(9+1)/2 = 45 = 3*3*5, therefore a(9) = 5.
		

Crossrefs

Related properties of triangular numbers: A069901, A069903, A069904.

Programs

  • Mathematica
    PrimeFactors[n_]:=Flatten[Table[ #[[1]],{1}]&/@FactorInteger[n]]; Table[PrimeFactors[n*(n-1)/2][[ -1]],{n,2,6!}] (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)
    (* Second program: *)
    Array[FactorInteger[PolygonalNumber[#]][[-1, 1]] &, 66] (* Michael De Vlieger, Sep 14 2023 *)
  • PARI
    \\ written for a(n), n >= 2
    a(n)=vecmax(factor(n*(n+1)/2)[,1]) \\ M. F. Hasler, May 02 2015

Formula

a(n) = A006530(A000217(n)).

Extensions

Edited by Peter Munn, Sep 14 2023

A069901 Smallest prime factor of n-th triangular number.

Original entry on oeis.org

1, 3, 2, 2, 3, 3, 2, 2, 3, 5, 2, 2, 7, 3, 2, 2, 3, 3, 2, 2, 3, 11, 2, 2, 5, 3, 2, 2, 3, 3, 2, 2, 3, 5, 2, 2, 19, 3, 2, 2, 3, 3, 2, 2, 3, 23, 2, 2, 5, 3, 2, 2, 3, 3, 2, 2, 3, 29, 2, 2, 31, 3, 2, 2, 3, 3, 2, 2, 3, 5, 2, 2, 37, 3, 2, 2, 3, 3, 2, 2, 3, 41, 2, 2, 5, 3, 2, 2, 3, 3, 2, 2, 3, 5, 2, 2, 7, 3, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 10 2002

Keywords

Comments

Or, a(1) = 1, then the smallest nontrivial k (>1) which divides the sum of (next n) numbers from k+1 to k+n or smallest k > 1 that divides nk + n(n+1)/2. - Amarnath Murthy, Sep 22 2002. For example, a(7) = 4, which is the smallest nontrivial number that divides the sum 5+6+...+11, of 7 numbers.

Examples

			A000217(10) = 10*(10+1)/2 = 55 = 5*11, therefore a(10) = 5.
		

Crossrefs

Programs

  • Mathematica
    FactorInteger[#][[1,1]]&/@Accumulate[Range[100]] (* Harvey P. Dale, Apr 05 2014 *)
  • PARI
    a(n) = if (n==1, 1, vecmin(factor(n*(n+1)/2)[,1]));

Formula

a(n) = A020639(A000217(n)).
a(4*k-1) = a(4*k) = 2.
From Zak Seidov, Jun 06 2013: (Start)
a(n) = 3 for n = {2, 5, 6, 9} + 12*k;
a(n) = 5 for n = {10, 25, 34, 49} + 60*k;
a(n) = 7 for n = {13, 97, 118, 133, 181, 202, 217, 238, 286, 301, 322, 406} + 420*k, etc. (End)

Extensions

Edited by N. J. A. Sloane, Sep 06 2008 at the suggestion of Franklin T. Adams-Watters

A069903 Number of distinct prime factors of n-th triangular number.

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 4, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 4, 3, 2, 3, 4, 3, 3, 3, 3, 4, 3, 2, 3, 3, 2, 3, 4, 3, 2, 3, 4, 4, 3, 2, 4, 4, 2, 3, 3, 3, 4, 3, 3, 4, 4, 3, 3, 3, 2, 3, 4, 4, 4, 3, 3, 3, 2, 2, 4, 5, 3, 3, 4, 3, 3, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 10 2002

Keywords

Examples

			A000217(11) = 11*(11+1)/2 = 66 = 2*3*11, therefore a(11) = 3.
		

Crossrefs

Programs

Formula

a(n) = A001221(A000217(n)).
Sum_{k=1..n} a(k) = 2 * n * (log(log(n)) + B - 1/4) + O(n/log(n)), where B is Mertens's constant (A077761). - Amiram Eldar, Sep 21 2024

A108815 Indices of triangular numbers which are products of 3 primes.

Original entry on oeis.org

7, 9, 11, 12, 14, 17, 18, 19, 21, 25, 28, 29, 30, 33, 34, 38, 41, 42, 43, 52, 57, 66, 67, 70, 78, 85, 86, 93, 94, 97, 101, 102, 109, 113, 118, 121, 122, 130, 133, 137, 138, 141, 142, 145, 148, 158, 163, 172, 173, 177, 181, 190, 201, 202, 205, 211, 213, 214, 217, 218
Offset: 1

Views

Author

Jonathan Vos Post, Jul 10 2005

Keywords

Comments

Indices of 3-almost prime triangular numbers.

Examples

			a(1) = 7 because T(7) = TriangularNumber(7) = 7*(7+1)/2 = 28 = 2^2 * 7 is a 3-almost prime.
a(2) = 9 because T(9) = 9*(9+1)/2 = 45 = 3^2 * 5 is a 3-almost prime.
a(3) = 11 because T(11) = 11*(11+1)/2 = 66 = 2 * 3 * 11.
a(31) = 101 because T(101) = 101*(101+1)/2 = 5151 = 3 * 17 * 101.
a(49) = 173 because T(173) = 173*(173+1)/2 = 15051 = 3 * 29 * 173.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[225], Plus @@ Last /@ FactorInteger[ #*(# + 1)/2] == 3 &] (* Ray Chandler, Jul 16 2005 *)
  • PARI
    issemi(n)=bigomega(n)==2
    is(n)=if(isprime(n/gcd(n,2)), issemi((n+1)/gcd(n+1,2)), isprime((n+1)/gcd(n+1,2)) && issemi(n/gcd(n,2))) \\ Charles R Greathouse IV, Feb 05 2017

Formula

{a(n)} = {k such that A001222(A000217(k)) = 3}. {a(n)} = {k such that k*(k+1)/2 has exactly 3 prime factors, with multiplicity}. {a(n)} = {k such that A000217(k) is an element of A014612}.
n such that n*(n+1)/2 is an element of A014612. n such that A000217(n) is an element of A014612. n such that C(n+1, 2) is an element of A014612.
{ m : A069904(m) = 3 }. - Alois P. Heinz, Aug 05 2019

Extensions

Extended by Ray Chandler, Jul 16 2005
Edited by N. J. A. Sloane, May 07 2007

A114435 Indices of 4-almost prime triangular numbers.

Original entry on oeis.org

8, 16, 20, 23, 26, 36, 40, 45, 49, 50, 51, 53, 59, 60, 62, 65, 68, 69, 74, 76, 77, 83, 88, 89, 91, 92, 100, 103, 105, 110, 114, 115, 117, 123, 126, 129, 131, 136, 139, 146, 149, 150, 151, 154, 156, 165, 169, 182, 185, 186, 187, 194, 196, 197, 198, 206, 210
Offset: 1

Views

Author

Jonathan Vos Post, Feb 13 2006

Keywords

Examples

			a(1) = 8 because T(8) = TriangularNumber(8) = 8*(8+1)/2 = 36 = 2^2 * 3^2 is a 4-almost prime.
a(2) = 16 because T(16) = 16*(16+1)/2 = 136 = 2^3 * 17 is a 4-almost prime.
a(3) = 20 because T(20) = 20*(20+1)/2 = 210 = 2 * 3 * 5 * 7 (210 = primorial 4#).
a(4) = 23 because T(23) = 23*(23+1)/2 = 276 = 2^2 * 3 * 23.
a(5) = 26 because T(26) = 26*(26+1)/2 = 351 = 3^3 * 13.
a(6) = 36 because T(36) = 36*(36+1)/2 = 666 = 2 * 3^2 * 37.
a(27) = 100 because T(100) = 100*(100+1)/2 = 5050 = 2 * 5^2 * 101.
a(57) = 210 because T(210) = 210*(210+1)/2 = 22155 = 3 * 5 * 7 * 211 (again, 210 = primorial 4#).
		

Crossrefs

Programs

Formula

{a(n)} = {k such that A001222(A000217(k)) = 4}. {a(n)} = {k such that k*(k+1)/2 has exactly 4 prime factors, with multiplicity}. {a(n)} = {k such that A000217(k) is an element of A014613}.
{ m : A069904(m) = 4 }. - Alois P. Heinz, Aug 05 2019

A114436 Indices of 5-almost prime triangular numbers.

Original entry on oeis.org

15, 24, 27, 31, 35, 39, 44, 47, 54, 55, 56, 71, 72, 75, 79, 81, 84, 87, 90, 98, 107, 108, 112, 116, 124, 132, 134, 140, 147, 153, 155, 162, 164, 167, 170, 171, 174, 179, 180, 183, 184, 199, 203, 204, 209, 219, 220, 225, 230, 234, 244, 245, 247, 248, 249
Offset: 1

Views

Author

Jonathan Vos Post, Feb 13 2006

Keywords

Examples

			a(1) = 15 because T(15) = TriangularNumber(15) = 15*(15+1)/2 = 120 = 2^3 * 3 * 5 is a 5-almost prime.
a(2) = 24 because T(24) = 24*(24+1)/2 = 300 = 2^2 * 3 * 5^2 is a 5-almost prime.
a(3) = 27 because T(27) = 27*(27+1)/2 = 378 = 2 * 3^3 * 7 is a 5-almost prime.
a(4) = 31 because T(27) = 31*(31+1)/2 = 496 = 2^4 * 31 is a 5-almost prime.
a(17) = 84 because T(27) = 84*(84+1)/2 = 3570 = 2 * 3 * 5 * 7 * 17 is a 5-almost prime.
		

Crossrefs

Programs

Formula

{a(n)} = {k such that A001222(A000217(k)) = 5}. {a(n)} = {k such that k*(k+1)/2 has exactly 5 prime factors, with multiplicity}. {a(n)} = {k such that A000217(k) is an element of A014614}.
{ m : A069904(m) = 5 }. - Alois P. Heinz, Aug 05 2019

Extensions

Corrected and extended by Harvey P. Dale, Apr 02 2011

A114437 Indices of 6-almost prime triangular numbers.

Original entry on oeis.org

32, 48, 96, 99, 104, 111, 119, 120, 125, 152, 161, 168, 176, 188, 189, 195, 200, 208, 223, 231, 239, 240, 252, 260, 264, 275, 299, 300, 303, 304, 315, 336, 342, 343, 344, 352, 359, 363, 374, 377, 391, 392, 395, 400
Offset: 1

Views

Author

Jonathan Vos Post, Feb 14 2006

Keywords

Examples

			a(1) = 48 because T(48) = TriangularNumber(48) = 48*(48+1)/2 = 1176 = 2^3 * 3 * 7^2 is a 6-almost prime.
a(2) = 96 because T(96) = 96*(96+1)/2 = 4656 = 2^4 * 3 * 97 is a 6-almost prime.
a(18) = 200 because T(200) = 200*(200+1)/2 = 20100 = 2^2 * 3 * 5^2 * 67 is a 6-almost prime.
a(29) = 300 because T(300) = 300*(300+1)/2 = 45150 = 2 * 3 * 5^2 * 7 * 43 is a 6-almost prime.
a(38) = 363 because T(363) = 363*(363+1)/2 = 45150 = 66066 = 2 * 3 * 7 * 11^2 * 13 is a 6-almost prime.
		

Crossrefs

Programs

Formula

{a(n)} = {k such that A001222(A000217(k)) = 6}. {a(n)} = {k such that k*(k+1)/2 has exactly 6 prime factors, with multiplicity}.
{a(n)} = {k such that A000217(k) is an element of A046306}.
{ m : A069904(m) = 6 }. - Alois P. Heinz, Aug 05 2019

Extensions

Corrected by Harvey P. Dale, Mar 29 2012

A101745 Indices of triangular numbers which are 10-almost primes. Indices of A101744.

Original entry on oeis.org

255, 384, 511, 575, 639, 728, 767, 896, 1088, 1295, 1376, 1407, 1599, 1700, 1727, 1792, 1919, 1920, 2015, 2024, 2375, 2431, 2672, 2815, 2880, 2915, 2944, 2975, 3104, 3159, 3199, 3327, 3375, 3392, 3456, 3583, 3744, 3999, 4031, 4032, 4160, 4223, 4256
Offset: 1

Views

Author

Jonathan Vos Post, Dec 14 2004

Keywords

Examples

			a(1) = 255 because that is the smallest index of a triangular number which is also a 10-almost prime; specifically T(255) = 255*(255+1)/2 = 32640 = 2^7 * 3 * 5 * 17.
		

Crossrefs

Programs

  • GAP
    F:=List([1..4300],n->Length(Factors(n*(n+1)/2)));; a:=Filtered([1..Length(F)],i->F[i]=10); # Muniru A Asiru, Dec 22 2018
  • Magma
    [n: n in [2..4500] | &+[d[2]: d in Factorization((n*(n+1)))] eq 11]; // Vincenzo Librandi, Dec 22 2018
    
  • Mathematica
    BigOmega[n_Integer]:=Plus@@Last[Transpose[FactorInteger[n]]]; Do[ t=n*(n+1)/2; If[BigOmega[t]==10, Print[n, " ", t];];, {n, 2, 5000}]; (* Ray Chandler, Dec 14 2004 *)
    Flatten[Position[Accumulate[Range[5000]],?(PrimeOmega[#]==10&)]] (* _Harvey P. Dale, May 12 2011 *)

Formula

a(n)*(a(n)+1)/2 has exactly 10 prime factors.
{ m : A069904(m) = 10 }. - Alois P. Heinz, Aug 05 2019

Extensions

More terms from Ray Chandler, Dec 14 2004

A240527 Indices of 7-almost prime triangular numbers.

Original entry on oeis.org

64, 95, 127, 135, 143, 144, 159, 160, 175, 191, 192, 207, 215, 216, 242, 243, 272, 279, 296, 323, 335, 350, 360, 368, 375, 404, 405, 415, 416, 431, 432, 448, 455, 459, 464, 479, 485, 504, 527, 528, 543, 544, 559, 584, 594, 615, 620, 623, 647, 656, 672, 719
Offset: 1

Views

Author

Vincenzo Librandi, Apr 07 2014

Keywords

Examples

			a(1) = 64 because A000217(64) = 64*(64+1)/2 = 2080 = 2^5 * 5 * 13 is a 7-almost prime.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Position[Accumulate[Range[800]],_?(PrimeOmega[#]==7&)]]

Formula

{ m : A069904(m) = 7 }. - Alois P. Heinz, Aug 05 2019
Showing 1-10 of 13 results. Next