cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A069904 Number of prime factors of n-th triangular number (with multiplicity).

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 3, 4, 3, 2, 3, 3, 2, 3, 5, 4, 3, 3, 3, 4, 3, 2, 4, 5, 3, 4, 5, 3, 3, 3, 5, 6, 3, 3, 5, 4, 2, 3, 5, 4, 3, 3, 3, 5, 4, 2, 5, 6, 4, 4, 4, 3, 4, 5, 5, 5, 3, 2, 4, 4, 2, 4, 8, 7, 4, 3, 3, 4, 4, 3, 5, 5, 2, 4, 5, 4, 4, 3, 5, 8, 5, 2, 4, 5, 3, 3, 5, 4, 4, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 10 2002

Keywords

Examples

			A000217(8) = 8*(8+1)/2 = 36 = 2*2*3*3, therefore a(8) = 4.
		

Crossrefs

Programs

Formula

a(n) = A001222(A000217(n)).
From Antti Karttunen, Oct 07 2017: (Start)
a(n) = (A001222(n)+A001222(n+1))-1.
a(n) = A001222(A278253(n)). (End)
From Alois P. Heinz, Aug 05 2019: (Start)
a(n) = 2 <=> n in { A164977 }.
a(n) = 3 <=> n in { A108815 }.
a(n) = 4 <=> n in { A114435 }.
a(n) = 5 <=> n in { A114436 }.
a(n) = 6 <=> n in { A114437 }.
a(n) = 7 <=> n in { A240527 }.
a(n) = 8 <=> n in { A240528 }.
a(n) = 9 <=> n in { A240529 }.
a(n) = 10 <=> n im { A101745 }. (End)

A240527 Indices of 7-almost prime triangular numbers.

Original entry on oeis.org

64, 95, 127, 135, 143, 144, 159, 160, 175, 191, 192, 207, 215, 216, 242, 243, 272, 279, 296, 323, 335, 350, 360, 368, 375, 404, 405, 415, 416, 431, 432, 448, 455, 459, 464, 479, 485, 504, 527, 528, 543, 544, 559, 584, 594, 615, 620, 623, 647, 656, 672, 719
Offset: 1

Views

Author

Vincenzo Librandi, Apr 07 2014

Keywords

Examples

			a(1) = 64 because A000217(64) = 64*(64+1)/2 = 2080 = 2^5 * 5 * 13 is a 7-almost prime.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Position[Accumulate[Range[800]],_?(PrimeOmega[#]==7&)]]

Formula

{ m : A069904(m) = 7 }. - Alois P. Heinz, Aug 05 2019

A240528 Indices of 8-almost prime triangular numbers.

Original entry on oeis.org

63, 80, 128, 256, 287, 288, 319, 320, 324, 383, 399, 440, 447, 480, 495, 539, 560, 567, 576, 608, 640, 648, 671, 675, 703, 720, 729, 799, 831, 863, 927, 935, 972, 975, 1000, 1007, 1055, 1056, 1071, 1079, 1080, 1104, 1119, 1120, 1160, 1175, 1183, 1184
Offset: 1

Views

Author

Vincenzo Librandi, Apr 07 2014

Keywords

Examples

			a(1) = 63 because A000217(63) = 63*(63+1)/2 = 2016 = 2^5 * 3^2 * 7 is an 8-almost prime.
		

Crossrefs

Cf. A046310 (8-almost primes).

Programs

  • GAP
    F:=List([1..1200],n->Length(Factors(n*(n+1)/2)));; a:=Filtered([1..Length(F)],i->F[i]=8); # Muniru A Asiru, Dec 22 2018
    
  • Magma
    [n: n in [2..1200] | &+[d[2]: d in Factorization((n*(n+1)))] eq 9]; // Vincenzo Librandi, Dec 22 2018
  • Mathematica
    Flatten[Position[Accumulate[Range[1500]], _?(PrimeOmega[#]== 8 &)]]

Formula

{ m : A069904(m) = 8 }. - Alois P. Heinz, Aug 05 2019

A240529 Indices of 9-almost prime triangular numbers.

Original entry on oeis.org

224, 351, 624, 704, 735, 768, 783, 800, 832, 864, 895, 944, 959, 960, 999, 1151, 1152, 1224, 1279, 1343, 1344, 1375, 1440, 1520, 1539, 1824, 1855, 1935, 1943, 1944, 1952, 2000, 2144, 2159, 2176, 2187, 2295, 2367, 2430, 2432, 2464, 2495, 2496, 2499, 2511
Offset: 1

Views

Author

Vincenzo Librandi, Apr 07 2014

Keywords

Examples

			a(1) = 224 because A000217(224) = 224*(224+1)/2 = 25200 = 2^4 * 3^2 * 5^2 * 7 is a 9-almost prime.
		

Crossrefs

Programs

  • GAP
    F:=List([1..2600],n->Length(Factors(n*(n+1)/2)));; a:=Filtered([1..Length(F)],i->F[i]=9); # Muniru A Asiru, Dec 22 2018
  • Magma
    [n: n in [2..2600] | &+[d[2]: d in Factorization((n*(n+1)))] eq 10]; // Vincenzo Librandi, Dec 22 2018
    
  • Mathematica
    Flatten[Position[Accumulate[Range[3500]], _?(PrimeOmega[#]== 9 &)]]
    Select[Range[3000], PrimeOmega[(# (# + 1))/2] == 9 &] (* Harvey P. Dale, Jun 22 2017 *)

Formula

{ m : A069904(m) = 9 }. - Alois P. Heinz, Aug 05 2019
Showing 1-4 of 4 results.