cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A076605 Largest prime divisor of n^2 - 1.

Original entry on oeis.org

3, 2, 5, 3, 7, 3, 7, 5, 11, 5, 13, 7, 13, 7, 17, 3, 19, 5, 19, 11, 23, 11, 23, 13, 5, 13, 29, 7, 31, 5, 31, 17, 11, 17, 37, 19, 37, 19, 41, 7, 43, 11, 43, 23, 47, 23, 47, 5, 17, 13, 53, 13, 53, 7, 19, 29, 59, 29, 61, 31, 61, 31, 13, 11, 67, 17, 67, 17, 71, 7
Offset: 2

Views

Author

Jon Perry, Oct 21 2002

Keywords

Comments

Also the largest prime that divides either n-1 or n+1.
Størmer shows that a(n) tends to infinity with n. Schinzel shows that lim inf a(n)/log log n >= 2 and, using lower bounds for linear forms of logarithms, this inequality can be generalized for general quadratic polynomials, with 2 replaced by 4/7 for irreducible ones and 2/7 for reducible ones. - Tomohiro Yamada, Apr 15 2017

Examples

			n=11: the largest prime factor of 10 and 12 is 5, therefore a(11) = 5.
		

References

  • K. Mahler, "Uber den grossten Primteiler spezieller Polynome zweiten Grades", Arch. Math. Naturvid. B.41, 1935, pp. 3 - 26.

Crossrefs

Cf. A006530, A037464, A074399 (bisections).
Cf. A175607.
Cf. A014442 (largest prime divisor of n^2 + 1). - Tomohiro Yamada, Apr 15 2017

Programs

  • Mathematica
    Table[ Last[ Table[ # [[1]]] & /@ FactorInteger[n^2 - 1]], {n, 2, 80}]
  • PARI
    for (n=3,100, print1(","max(factor(n-1)[,1][length(factor(n-1)[,1])],factor(n+1)[,1][length(factor(n+1)[,1])])))

A074399 a(n) is the largest prime divisor of n(n+1).

Original entry on oeis.org

2, 3, 3, 5, 5, 7, 7, 3, 5, 11, 11, 13, 13, 7, 5, 17, 17, 19, 19, 7, 11, 23, 23, 5, 13, 13, 7, 29, 29, 31, 31, 11, 17, 17, 7, 37, 37, 19, 13, 41, 41, 43, 43, 11, 23, 47, 47, 7, 7, 17, 17, 53, 53, 11, 11, 19, 29, 59, 59, 61, 61, 31, 7, 13, 13, 67, 67, 23, 23, 71, 71, 73, 73, 37, 19
Offset: 1

Views

Author

N. J. A. Sloane, Nov 29 2002

Keywords

Comments

Størmer shows that a(n) tends to infinity with n. Pólya generalized this result to other polynomials.
Kotov shows that a(n) >> log log n. - Charles R Greathouse IV, Mar 26 2012
Keates and Schinzel give effective constants for the above; in particular the latter shows that lim inf a(n)/log log n >= 2/7. - Charles R Greathouse IV, Nov 12 2012
Erdős conjectures ("on very flimsy probabilistic grounds") that for every e > 0, a(n) < (log n)^(2+e) infinitely often, while a(n) < (log n)^(2-e) only finitely often. - Charles R Greathouse IV, Mar 11 2015

References

  • S. V. Kotov, The greatest prime factor of a polynomial (in Russian), Mat. Zametki 13 (1973), pp. 515-522.
  • K. Mahler, Über den größten Primteiler spezieller Polynome zweiten Grades, Archiv for mathematik og naturvidenskab 41:6 (1934), pp. 3-26.
  • Georg Pólya, Zur arithmetischen Untersuchung der Polynome, Math. Zeitschrift 1 (1918), pp. 143-148.

Crossrefs

With A037464, the bisections of A076605.
Essentially the same as A069902.
Positions of primes <= p: A085152 (p=5), A085153 (p=7), A252494 (p=11), A252493 (p=13), A252492 (p=17).
Last position of each prime: A002072.

Programs

  • Mathematica
    Table[ Last[ Table[ # [[1]]] & /@ FactorInteger[n^2 - 1]], {n, 3, 160, 2}]
    Table[FactorInteger[n(n+1)][[-1,1]],{n,80}] (* Harvey P. Dale, Sep 28 2021 *)
  • PARI
    gpf(n)=my(f=factor(n)[,1]); f[#f]
    a(n)=if(n<3, n+1, max(gpf(n),gpf(n+1))) \\ Charles R Greathouse IV, Sep 14 2015

Formula

a(n) = Max (A006530(2n), A006530(2n+2)).
Pasten proves that a(n) >> (log log n)^2/(log log log n), see Corollary 1.5. - Charles R Greathouse IV, Oct 14 2024

Extensions

Extended by Robert G. Wilson v, Dec 02 2002

A321069 Greatest prime factor of n^3+2.

Original entry on oeis.org

3, 5, 29, 11, 127, 109, 23, 257, 43, 167, 43, 173, 733, 1373, 307, 683, 983, 2917, 2287, 4001, 157, 71, 283, 223, 5209, 47, 127, 3659, 24391, 587, 9931, 113, 433, 6551, 809, 569, 307, 27437, 433, 10667, 439, 239, 1559, 223, 91127, 16223, 4153, 457, 39217, 62501
Offset: 1

Views

Author

Keywords

Crossrefs

Greatest prime factors of polynomials: A006530 (n), A076565 (2n+1), A076566 (3n+3), A076567 (4n+6), A164314 (n^2-2), A076605 (n^2-1), A014442 (n^2+1), A069902 (n^2+n), A074399 (n^2+n), A199423 (2n^2+n), A089619 (2n^2+2n+1), A037464 (4n^2-1), A253254 (9n^2-7n), A093074 (n^3-n), A081257 (n^3-1), A081256 (n^3+1), A321069(n^3+2), A281793 (n^3+n^2+n+1), A281793 (n^4-1), A096172 (n^4+1), A190136 (n^4 + 6n^3 + 11n^2 + 6n), A140538 (2n^4+1), A240548 (n^5+1), A281794 (n^5+n^3+n^2+1), A240549 (n^6+1), A240550 (n^7+1), A240551 (n^8+1), A240552 (n^9+1), A240553 (n^10+1).

Programs

  • Magma
    [Maximum(PrimeDivisors(n^3 + 2)): n in [1..60]]; // Vincenzo Librandi, Oct 27 2018
    
  • Mathematica
    Table[FactorInteger[n^3 + 2] [[-1, 1]], {n, 80}] (* Vincenzo Librandi, Oct 27 2018 *)
  • PARI
    a(n) = vecmax(factor(n^3+2)[,1]); \\ Michel Marcus, Oct 27 2018
Showing 1-3 of 3 results.