cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074451 Non-cubefree noncubes.

Original entry on oeis.org

16, 24, 32, 40, 48, 54, 56, 72, 80, 81, 88, 96, 104, 108, 112, 120, 128, 135, 136, 144, 152, 160, 162, 168, 176, 184, 189, 192, 200, 208, 224, 232, 240, 243, 248, 250, 256, 264, 270, 272, 280, 288, 296, 297, 304, 312, 320, 324, 328, 336, 344, 351, 352, 360
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 25 2002

Keywords

Crossrefs

Intersection of A046099 and A007412.

Programs

  • Mathematica
    With[{m = 10}, Select[Complement[Range[m^3], Range[m]^3], AnyTrue[FactorInteger[#][[;; , 2]], #1 > 2 &] &]] (* Amiram Eldar, Aug 31 2024 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); f%3 && vecmax(f)>2 \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    from sympy import integer_nthroot, mobius
    def A074451(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n-1+(m:=integer_nthroot(x,3)[0])+sum(mobius(k)*(x//k**3) for k in range(1, m+1))
        return bisection(f,n,n) # Chai Wah Wu, Jun 05 2025

Formula

For n > 35, a(n) < 7n. Asymptotically, a(n) ~ kn with k = zeta(3)/(zeta(3)-1) = 5.949... . - Charles R Greathouse IV, Oct 16 2015 [Corrected by Amiram Eldar, Aug 31 2024]
Sum_{n>=1} 1/a(n)^s = 1 + zeta(s) - zeta(3*s) - zeta(s)/zeta(3*s), for s > 1. - Amiram Eldar, Aug 31 2024