A074451 Non-cubefree noncubes.
16, 24, 32, 40, 48, 54, 56, 72, 80, 81, 88, 96, 104, 108, 112, 120, 128, 135, 136, 144, 152, 160, 162, 168, 176, 184, 189, 192, 200, 208, 224, 232, 240, 243, 248, 250, 256, 264, 270, 272, 280, 288, 296, 297, 304, 312, 320, 324, 328, 336, 344, 351, 352, 360
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
With[{m = 10}, Select[Complement[Range[m^3], Range[m]^3], AnyTrue[FactorInteger[#][[;; , 2]], #1 > 2 &] &]] (* Amiram Eldar, Aug 31 2024 *)
-
PARI
is(n)=my(f=factor(n)[,2]); f%3 && vecmax(f)>2 \\ Charles R Greathouse IV, Oct 16 2015
-
Python
from sympy import integer_nthroot, mobius def A074451(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n-1+(m:=integer_nthroot(x,3)[0])+sum(mobius(k)*(x//k**3) for k in range(1, m+1)) return bisection(f,n,n) # Chai Wah Wu, Jun 05 2025
Formula
For n > 35, a(n) < 7n. Asymptotically, a(n) ~ kn with k = zeta(3)/(zeta(3)-1) = 5.949... . - Charles R Greathouse IV, Oct 16 2015 [Corrected by Amiram Eldar, Aug 31 2024]
Sum_{n>=1} 1/a(n)^s = 1 + zeta(s) - zeta(3*s) - zeta(s)/zeta(3*s), for s > 1. - Amiram Eldar, Aug 31 2024