cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074455 Consider the volume of unit sphere as a function of the dimension d; maximize this as a function of d (considered as a continuous variable); sequence gives decimal expansion of the best d.

Original entry on oeis.org

5, 2, 5, 6, 9, 4, 6, 4, 0, 4, 8, 6, 0, 5, 7, 6, 7, 8, 0, 1, 3, 2, 8, 3, 8, 3, 8, 8, 6, 9, 0, 7, 6, 9, 2, 3, 6, 6, 1, 9, 0, 1, 7, 2, 3, 7, 1, 8, 3, 2, 1, 4, 8, 5, 7, 5, 0, 9, 8, 7, 9, 6, 7, 8, 7, 7, 7, 1, 0, 9, 3, 4, 6, 7, 3, 6, 8, 2, 0, 2, 7, 2, 8, 1, 7, 7, 2, 0, 2, 3, 8, 4, 8, 9, 7, 9, 2, 4, 6, 9, 2, 6
Offset: 1

Views

Author

Robert G. Wilson v, Aug 22 2002

Keywords

Comments

From David W. Wilson, Jul 12 2007: (Start)
For an integer d, the volume of a d-dimensional unit ball is v(d) = Pi^(d/2)/(d/2)! and its surface area is area(d) = d*Pi^(d/2)/(d/2)! = d*v(d). If we interpolate n! = gamma(n+1) we can define v(d) and area(d) as continuous functions for (at least) d >= 0.
A074457 purports to minimize area(d). Since area(d+2) = 2*Pi*v(d), area() is minimized at y = x+2; therefore A074457 coincides with the current sequence except at the first term. (End)

Examples

			5.256946404860576780132838388690769236619017237183214857509879678777109...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 9.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 34.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 67.

Crossrefs

Cf. A074457.
The volume is given by A074454. Cf. A072345 & A072346.

Programs

  • Mathematica
    x /. FindRoot[ PolyGamma[1 + x/2] == Log[Pi], {x, 5}, WorkingPrecision -> 105] // RealDigits // First (* Jean-François Alcover, Mar 28 2013 *)
  • PARI
    hyperspheresurface(d)=2*Pi^(d/2)/gamma(d/2)
    hyperspherevolume(d)=hyperspheresurface(d)/d
    FindMax(fn_x,lo,hi)=
    {
    local(oldprecision, x, y, z);
    oldprecision = default(realprecision);
    default(realprecision, oldprecision+10);
    while (hi-lo > 10^-oldprecision,
    while (1,
    z = vector(2, i, lo*(3-i)/3 + hi*i/3);
    y = vector(2, i, eval(Str("x = z[" i "]; " fn_x)));
    if (abs(y[1]-y[2]) > 10^(5-default(realprecision)), break);
    default(realprecision, default(realprecision)+10);
    );
    if (y[1] < y[2], lo = z[1], hi = z[2]);
    );
    default(realprecision, oldprecision);
    (lo + hi) / 2.
    }
    default(realprecision, 105);
    A074455=FindMax("hyperspherevolume(x)", 1, 9)
    A074457=FindMax("hyperspheresurface(x)", 1, 9)
    A074454=hyperspherevolume(A074455)
    A074456=hyperspheresurface(A074457)
    /* David W. Cantrell */
    
  • PARI
    2 * (solve(x=3, 4, psi(x) - log(Pi)) - 1) \\ Jianing Song, May 12 2025

Formula

d = root of Psi((1/2)*d + 1) = log(Pi).
d is 2 less than the number with decimal digits A074457 (the hypersphere dimension that maximizes hypersurface area). - Eric W. Weisstein, Dec 02 2014

Extensions

Corrected by Eric W. Weisstein, Aug 31 2003
Corrected by Martin Fuller, Jul 12 2007