A074581 a(n) = T(3n+1), where T(n) are tribonacci numbers A000073.
0, 2, 13, 81, 504, 3136, 19513, 121415, 755476, 4700770, 29249425, 181997601, 1132436852, 7046319384, 43844049029, 272809183135, 1697490356184, 10562230626642, 65720971788709, 408933139743937, 2544489349890656
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (7,-5,1).
Crossrefs
Cf. A000073.
Programs
-
Mathematica
CoefficientList[Series[(2*x-x^2)/(1-7*x+5*x^2-x^3), {x, 0, 40}], x] LinearRecurrence[{7,-5,1},{0,2,13},30] (* Harvey P. Dale, Jul 22 2021 *)
Formula
a(n) = 7*a(n-1) - 5*a(n-2) + a(n-3), a(0)=0, a(1)=2, a(2)=13.
G.f.: (2*x - x^2)/(1 - 7*x + 5*x^2 - x^3). [corrected by Nguyen Tuan Anh, Jan 10 2025]
Extensions
Definition corrected by David Scambler, Oct 18 2010
Comments