cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074582 a(n) = S(3n), where S(n) is the generalized tribonacci sequence A001644.

Original entry on oeis.org

3, 7, 39, 241, 1499, 9327, 58035, 361109, 2246915, 13980895, 86992799, 541292033, 3368061131, 20956960551, 130399710235, 811381230021, 5048627019523, 31413882696791, 195465425009943, 1216237188605169, 7567747077883259
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 24 2002

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (3-14*x+5*x^2)/(1-7*x+5*x^2-x^3) )); // G. C. Greubel, Apr 13 2019
    
  • Mathematica
    CoefficientList[Series[(3-14*x+5*x^2)/(1-7*x+5*x^2-x^3), {x, 0, 30}], x]
    LinearRecurrence[{7,-5,1},{3,7,39},30] (* Harvey P. Dale, Mar 24 2022 *)
  • PARI
    my(x='x+O('x^30)); Vec((3-14*x+5*x^2)/(1-7*x+5*x^2-x^3)) \\ G. C. Greubel, Apr 13 2019
    
  • Sage
    ((3-14*x+5*x^2)/(1-7*x+5*x^2-x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 13 2019

Formula

a(n) = 7*a(n-1) - 5*a(n-2) + a(n-3), a(0)=3, a(1)=7, a(2)=39.
G.f.: (3-14*x+5*x^2)/(1-7*x+5*x^2-x^3).