cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A045590 Numbers k that divide 5^k + 4^k.

Original entry on oeis.org

1, 3, 9, 21, 27, 63, 81, 147, 189, 243, 441, 567, 729, 903, 1029, 1323, 1701, 2187, 2667, 2709, 2943, 3087, 3969, 5103, 6321, 6561, 7203, 8001, 8127, 8829, 9261, 11907, 13203, 15309, 18669, 18963, 19683, 20601, 21609, 24003, 24381, 26487
Offset: 1

Views

Author

Keywords

Comments

From Robert Israel, May 19 2025: (Start)
All terms are coprime to 10.
The only prime term is 3.
If k is a term, then so is 3 * k.
Is 1 the only term not divisible by 3? (End)

Crossrefs

Cf. A074611.

Programs

  • Maple
    filter:= k -> 5 &^ k + 4 &^ k mod k = 0:
    select(filter, [seq(i,i=1..10^5,2)]); # Robert Israel, May 19 2025
  • Mathematica
    Select[Range[30000],Divisible[5^#+4^#,#]&] (* Harvey P. Dale, Nov 17 2013 *)

A210694 T(n,k)=Number of (n+1)X(n+1) -k..k symmetric matrices with every 2X2 subblock having sum zero.

Original entry on oeis.org

5, 13, 9, 25, 35, 17, 41, 91, 97, 33, 61, 189, 337, 275, 65, 85, 341, 881, 1267, 793, 129, 113, 559, 1921, 4149, 4825, 2315, 257, 145, 855, 3697, 10901, 19721, 18571, 6817, 513, 181, 1241, 6497, 24583, 62281, 94509, 72097, 20195, 1025, 221, 1729, 10657, 49575
Offset: 1

Views

Author

R. H. Hardin, with R. J. Mathar in the Sequence Fans Mailing List, Mar 30 2012

Keywords

Comments

Table starts
...5....13.....25......41.......61.......85.......113.......145........181
...9....35.....91.....189......341......559.......855......1241.......1729
..17....97....337.....881.....1921.....3697......6497.....10657......16561
..33...275...1267....4149....10901....24583.....49575.....91817.....159049
..65...793...4825...19721....62281...164305....379793....793585....1531441
.129..2315..18571...94509...358061..1103479...2920695...6880121...14782969
.257..6817..72097..456161..2070241..7444417..22542017..59823937..143046721
.513.20195.281827.2215269.12030821.50431303.174571335.521638217.1387420489
Solutions are determined by the diagonal, extended with x(i,j) = (x(i,i)+x(j,j))/2 * (-1)^(i-j)

Examples

			Some solutions for n=3 k=4
.-2..1.-3..0....0.-1..0..1....4..0..1.-1....2.-1.-1.-2....3.-2..1..0
..1..0..2..1...-1..2.-1..0....0.-4..3.-3...-1..0..2..1...-2..1..0.-1
.-3..2.-4..1....0.-1..0..1....1..3.-2..2...-1..2.-4..1....1..0.-1..2
..0..1..1..2....1..0..1.-2...-1.-3..2.-2...-2..1..1..2....0.-1..2.-3
		

Crossrefs

Column 1 is A000051(n+1)
Column 2 is A007689(n+1)
Column 3 is A074605(n+1)
Column 4 is A074611(n+1)
Column 5 is A074615(n+1)
Column 6 is A074619(n+1)
Column 7 is A074622(n+1)
Column 8 is A074624(n+1)
Row 1 is A001844
Row 2 is A005898
Row 3 is A008514
Row 4 is A008515
Row 5 is A008516
Row 6 is A036085
Row 7 is A036086
Row 8 is A036087

Formula

T(n,k)=k^(n+1)+(k+1)^(n+1)

A221904 a(n) = 9^n + 10^n.

Original entry on oeis.org

2, 19, 181, 1729, 16561, 159049, 1531441, 14782969, 143046721, 1387420489, 13486784401, 131381059609, 1282429536481, 12541865828329, 122876792454961, 1205891132094649, 11853020188851841
Offset: 0

Views

Author

Vincenzo Librandi, Feb 06 2013

Keywords

Crossrefs

Programs

  • Magma
    [9^n + 10^n: n in [0..30]];
  • Mathematica
    CoefficientList[Series[1/(1-9*x) + 1/(1-10*x), {x, 0, 30}], x]
    LinearRecurrence[{19,-90},{2,19},30] (* Harvey P. Dale, Nov 10 2017 *)

Formula

G.f.: 1/(1 - 9*x) + 1/(1 - 10*x).
E.g.f.: exp(9*x) + exp(10*x).
a(n) = 19*a(n-1) - 90*a(n-2), a(1)=2, a(2)=19.
Showing 1-3 of 3 results.