cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A245807 a(n) = 7^n + 10^n.

Original entry on oeis.org

2, 17, 149, 1343, 12401, 116807, 1117649, 10823543, 105764801, 1040353607, 10282475249, 101977326743, 1013841287201, 10096889010407, 100678223072849, 1004747561509943, 10033232930569601, 100232630513987207, 1001628413597910449, 10011398895185373143
Offset: 0

Views

Author

Vincenzo Librandi, Aug 04 2014

Keywords

Crossrefs

Cf. 7^n+k^n: A034491 (k=1), A074602 (k=2), A074608 (k=3), A074613 (k=4), A074616 (k=5), A074619 (k=6), A109808 (k=7), A074622 (k=8), A074623 (k=9), this sequence (k=10).

Programs

  • Magma
    [7^n+10^n: n in [0..25]];
    
  • Magma
    I:=[2,17]; [n le 2 select I[n] else 17*Self(n-1)-70*Self(n-2): n in [1..25]];
  • Mathematica
    Table[(7^n + 10^n), {n, 0, 30}] (* or *) CoefficientList[Series[(2 - 17 x)/((1 - 7 x) (1 - 10 x)), {x, 0, 40}], x]

Formula

G.f.: (2-17*x)/((1-7*x)*(1-10*x)).
E.g.f.: e^(7*x) + e^(10*x).
a(n) = 17*a(n-1)-70*a(n-2).
a(n) = A000420(n) + A011557(n).

A045592 Numbers k that divide 7^k + 4^k.

Original entry on oeis.org

1, 11, 121, 253, 737, 1331, 2783, 5819, 8107, 14641, 16951, 30613, 49379, 64009, 89177, 116897, 133837, 161051, 186461, 336743, 389873, 543169, 640343, 704099, 980947, 1135717, 1285867, 1292071, 1472207, 1771561, 2051071, 2688631
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A074613.

Programs

  • Mathematica
    Select[Range[269*10^4],Mod[PowerMod[7,#,#]+PowerMod[4,#,#],#]==0&] (* Harvey P. Dale, Jun 25 2021 *)
Showing 1-2 of 2 results.