cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A074656 Number of Lyndon words (aperiodic necklaces) with 4n beads of 4 colors, n beads of each color.

Original entry on oeis.org

1, 6, 312, 30798, 3941280, 586637250, 96197630040, 16875655269942, 3111284137104000, 595909785174026400, 117634021776545937000, 23797087019979071174574, 4912693780461256332795168, 1031629572413246016139181538, 219809927417367517614451764984
Offset: 0

Views

Author

Christian G. Bower, Aug 29 2002

Keywords

Examples

			For n=1 the 6 words are 0123 0132 0213 0231 0312 0321 . - _R. J. Mathar_, Oct 21 2021
		

Crossrefs

a(n)=A029809(n)*6. a(n) = A074652(n)/4.

Formula

1/(4n) * sum over d|n of {mu(n/d) * (4d)! / d!^4}.

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 24 2015

A006175 Witt vector *4!.

Original entry on oeis.org

24, 972, 118592, 15210414, 2344956480, 377420590432, 67501965869568, 12329221295657241, 2383082885396731968, 467786496795764717088, 95188347941581635319296, 19578329367376510676884584
Offset: 1

Views

Author

Keywords

Comments

If c is the Witt transform of b then b(n) = Sum_{d|n} A074650(n/d, c(d)).

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

Witt transform of A074652.

Extensions

More terms and formula from Christian G. Bower, Aug 28 2002
Showing 1-2 of 2 results.