cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A006180 Witt vector *5!/5!.

Original entry on oeis.org

1, 472, 467133, 636430764, 1038934571875, 1903882757758426, 3782689379194538057, 7975541699963490241566, 17602442746255160006062232, 40278440105728693363331297293
Offset: 1

Views

Author

Keywords

Comments

If c is the Witt transform of b then b(n) = Sum_{d|n} A074650(n/d, c(d)).

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

Witt transform of A074654.

Extensions

More terms and formula from Christian G. Bower, Aug 28 2002

A074657 Number of Lyndon words (aperiodic necklaces) with 5n beads of 5 colors, n beads of each color.

Original entry on oeis.org

1, 24, 11328, 11211192, 15277006080, 24934429725000, 45695805580701504, 90784545100668913368, 191417861328822311040000, 422458626725600682506889600, 966695515158024385775097720000, 2277925055026596846727033776223416, 5499697195473757755136472944165075200
Offset: 0

Views

Author

Christian G. Bower, Aug 29 2002

Keywords

Crossrefs

a(n) = A074653(n)/5. a(n)=A074654(n)*24.

Formula

1/(5n) * sum over d|n of {mu(n/d) * (5d)! / d!^5}.

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 24 2015
Showing 1-2 of 2 results.