cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074662 a(n) = Fibonacci(n+1)+cos(n*Pi/2).

Original entry on oeis.org

2, 1, 1, 3, 6, 8, 12, 21, 35, 55, 88, 144, 234, 377, 609, 987, 1598, 2584, 4180, 6765, 10947, 17711, 28656, 46368, 75026, 121393, 196417, 317811, 514230, 832040, 1346268, 2178309, 3524579, 5702887, 9227464, 14930352, 24157818, 39088169
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 29 2002

Keywords

Comments

a(n) is the convolution of L(n) with the sequence (1,0,-1,0,1,0,-1,0,....) A056594. a(2n+1)=F(2n+2), F = Fibonacci numbers.
a(n) = Sum((-1)^(i+floor(n/2))L(2i+e),(i=0..floor(n/2))), where L(n) Lucas numbers and e=(1/2)(1-(-1)^n).

Examples

			G.f. = 2 + x + x^2 + 3*x^3 + 6*x^4 + 8*x^5 + 12*x^6 + 21*x^7 + 35*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(2 - x)/(1 - x - x^3 - x^4), {x, 0, 40}], x]
    a[ n_] := Fibonacci[n + 1] + Re[I^n] (* Michael Somos, Jan 19 2014 *)
    LinearRecurrence[{1,0,1,1},{2,1,1,3},50] (* Harvey P. Dale, Sep 08 2023 *)
  • PARI
    {a(n) = fibonacci(n+1) + real(I^n)} /* Michael Somos, Jan 19 2014 */

Formula

a(n) = a(n-1)+a(n-3)+a(n-4), a(0)=2, a(1)=1, a(2)=1, a(3)=3.
G.f.: (2 - x)/(1 - x - x^3 - x^4).
a(4n) = F(4n+1)+1, a(4n+2) = F(4n+3)-1.
a(n+1)*a(n+3) = a(n)*a(n+2) + a(n+1)*a(n+2) for all n in Z. - Michael Somos, Jan 19 2014