A074662 a(n) = Fibonacci(n+1)+cos(n*Pi/2).
2, 1, 1, 3, 6, 8, 12, 21, 35, 55, 88, 144, 234, 377, 609, 987, 1598, 2584, 4180, 6765, 10947, 17711, 28656, 46368, 75026, 121393, 196417, 317811, 514230, 832040, 1346268, 2178309, 3524579, 5702887, 9227464, 14930352, 24157818, 39088169
Offset: 0
Examples
G.f. = 2 + x + x^2 + 3*x^3 + 6*x^4 + 8*x^5 + 12*x^6 + 21*x^7 + 35*x^8 + ...
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,1).
Programs
-
Mathematica
CoefficientList[Series[(2 - x)/(1 - x - x^3 - x^4), {x, 0, 40}], x] a[ n_] := Fibonacci[n + 1] + Re[I^n] (* Michael Somos, Jan 19 2014 *) LinearRecurrence[{1,0,1,1},{2,1,1,3},50] (* Harvey P. Dale, Sep 08 2023 *)
-
PARI
{a(n) = fibonacci(n+1) + real(I^n)} /* Michael Somos, Jan 19 2014 */
Formula
a(n) = a(n-1)+a(n-3)+a(n-4), a(0)=2, a(1)=1, a(2)=1, a(3)=3.
G.f.: (2 - x)/(1 - x - x^3 - x^4).
a(4n) = F(4n+1)+1, a(4n+2) = F(4n+3)-1.
a(n+1)*a(n+3) = a(n)*a(n+2) + a(n+1)*a(n+2) for all n in Z. - Michael Somos, Jan 19 2014
Comments