cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074665 8-digit distinct digit primes.

Original entry on oeis.org

10234589, 10234759, 10234897, 10235647, 10235749, 10235867, 10236547, 10236857, 10237849, 10238467, 10238597, 10238647, 10238759, 10238957, 10239487, 10239587, 10239847, 10243567, 10243657, 10243759, 10243769
Offset: 1

Views

Author

Zak Seidov, Aug 30 2002

Keywords

Comments

There are exactly 90510 eight-digit primes with all distinct digits. The last few are: 98745623, 98746031, 98746231, 98746321, 98750143, 98750213, 98750261, 98751043, 98751203, 98751403, 98751643, 98752061, 98752301, 98752361, 98752403, 98752603, 98752613, 98753201, 98753401, 98754163, 98754301, 98756431, 98760241, 98760421, 98760523, 98761543, 98762051, 98762431, 98762501, 98764013, 98764021, 98764153, 98764321, 98765143, 98765201, 98765413, 98765431.

Examples

			10247693 is a member because it is prime and has 8 digits all distinct.
		

Crossrefs

First differences are in A074666.

Programs

  • Mathematica
    Select[Range[10234589, 98765431, 2], Length[Union[IntegerDigits[ # ]]]==8 &&PrimeQ[ # ]&]
  • PARI
    is(n)=isprime(n) && #digits(n)==8 && #Set(digits(n))==8 \\ Charles R Greathouse IV, Feb 11 2017