A074712 Number of (interiors of) cells touched by a diagonal in a regular n X k grid (enumerated antidiagonally).
1, 2, 2, 3, 2, 3, 4, 4, 4, 4, 5, 4, 3, 4, 5, 6, 6, 6, 6, 6, 6, 7, 6, 7, 4, 7, 6, 7, 8, 8, 6, 8, 8, 6, 8, 8, 9, 8, 9, 8, 5, 8, 9, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 9, 8, 11, 6, 11, 8, 9, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12
Offset: 1
Examples
The square array A(n,k) (n >= 1, k >= 1) begins: 1 2 3 4 5 6 7 8 2 2 4 4 6 6 8 8 3 4 3 6 7 6 9 10 4 4 6 4 8 8 10 8 5 6 7 8 5 10 11 12 6 6 6 8 10 6 12 12 7 8 9 10 11 12 7 14 8 8 10 8 12 12 14 8 ... From _Seiichi Manyama_, Apr 05 2025: (Start) The triangle T(n,k) (1 <= k <= n) begins: 1; 2, 2; 3, 2, 3; 4, 4, 4, 4; 5, 4, 3, 4, 5; 6, 6, 6, 6, 6, 6; 7, 6, 7, 4, 7, 6, 7; 8, 8, 6, 8, 8, 6, 8, 8; 9, 8, 9, 8, 5, 8, 9, 8, 9; 10, 10, 10, 10, 10, 10, 10, 10, 10, 10; ... (End)
Links
- Nathaniel Johnston, First 150 antidiagonals, flattened
- Micky Bullock, The Diagonal Problem (2 dimensions).
- Alberto L. Delgado's Problem of the Week No. 145.
Programs
-
Maple
A074712 := proc(m,n) local d: d:=gcd(m,n): if(d=1)then return m+n-1: else return d*procname(m/d,n/d): fi: end: seq(seq(A074712(n-d+1,d),d=1..n),n=1..8); # Nathaniel Johnston, May 09 2011
-
Mathematica
A[m_,n_]=m+n-GCD[m,n];Table[A[m,s-m],{s,2,10},{m,1,s-1}]//Flatten (* Luc Rousseau, Sep 16 2017 *)
-
PARI
(A(n,k)=n+k-gcd(n,k));for(s=2,10,for(n=1,s-1,k=s-n;print1(A(n,k),", "))) \\ Luc Rousseau, Sep 16 2017
Formula
A(n, k) = n + k - 1 if n and k are coprime; A(n, k) = d * A(n/d, k/d) where d is the greatest common divisor of n and k, otherwise.
A(n, k) = n + k - gcd(n, k). - Luc Rousseau, Sep 15 2017
T(n,k) = A(k,n-k+1) = n+1 - A050873(n+1,k). - Seiichi Manyama, Apr 05 2025
Comments