A074723 Largest power of 2 dividing F(3n) where F(k) is the k-th Fibonacci number.
2, 8, 2, 16, 2, 8, 2, 32, 2, 8, 2, 16, 2, 8, 2, 64, 2, 8, 2, 16, 2, 8, 2, 32, 2, 8, 2, 16, 2, 8, 2, 128, 2, 8, 2, 16, 2, 8, 2, 32, 2, 8, 2, 16, 2, 8, 2, 64, 2, 8, 2, 16, 2, 8, 2, 32, 2, 8, 2, 16, 2, 8, 2, 256, 2, 8, 2, 16, 2, 8, 2, 32, 2, 8, 2, 16, 2, 8, 2, 64, 2, 8, 2, 16, 2, 8, 2, 32, 2, 8, 2
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
seq(`if`(n::odd,2,2^(2+padic:-ordp(n,2))),n=1..100); # Robert Israel, Oct 10 2016
-
Mathematica
Table[2^(Length@ NestWhileList[#/2 &, Fibonacci[3 n], IntegerQ] - 2), {n, 120}] (* Michael De Vlieger, Oct 10 2016 *) a[n_] := If[EvenQ[n], 2^(FactorInteger[n][[1]][[2]] + 2), 2]; Array[a, 90] (* Frank M Jackson, Jul 28 2018 *)
-
PARI
a(n) = 2^valuation(fibonacci(3*n), 2); \\ Michel Marcus, Oct 10 2016
Formula
It appears that 4 never appears and : a(2k+1)=2 a(2^m*(2k+1))=2^(m+2) for k>=0 and m >=1.
From Robert Israel, Oct 10 2016: (Start)
a(2k+1)=2 follows from F(n+6) = 5 F(n) + 8 F(n+1) == F(n) mod 4.
a(2*(2k+1))=8 follows from F(n+12) = 89 F(n) + 144 F(n+1) == 9 F(n) mod 16.
a(2^m*(2k+1)) = 2^(m+2) for m > 2 follows from F(2n) = F(n) (2 F(n-1) + F(n)).
G.f. 2*x/(1-x^2) + Sum_{m>=1} 2^(m+2)*x^(2^m)/(1 - x^(2^(m+1))). (End)
As proved above, for m > 0, a(2m-1) = 2 and a(2m) = 2^(k+2) where k is the exponent of the even prime in the prime factorization of 2m. Also a(n) = 2*A297402(n). - Frank M Jackson, Jul 28 2018
Sum_{k=1..n} a(k) ~ (2*n/log(2)) * (log(n) + gamma + log(2) - 1), where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2023
Comments