A074752 Number of combinatorially inequivalent cyclic subgroups of S_n of order 6. Number of partitions of n of order 6.
1, 2, 3, 5, 7, 9, 12, 16, 19, 24, 29, 34, 40, 48, 54, 63, 72, 81, 91, 104, 114, 128, 142, 156, 171, 190, 205, 225, 245, 265, 286, 312, 333, 360, 387, 414, 442, 476, 504, 539, 574, 609, 645, 688, 724, 768, 812, 856, 901, 954, 999, 1053, 1107, 1161, 1216, 1280
Offset: 5
Links
- Alois P. Heinz, Table of n, a(n) for n = 5..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,2,-1,-1,0,1,1,-1).
Programs
-
Mathematica
LinearRecurrence[{1,1,0,-1,-1,2,-1,-1,0,1,1,-1},{1,2,3,5,7,9,12,16,19,24,29,34},60] (* Harvey P. Dale, May 23 2020 *)
Formula
G.f.: x^5*(1+x-x^6)/((x-1)*(x^2-1)*(x^3-1)*(x^6-1)). More generally, g.f. for number of partitions of order d is Sum_{i divides d} mu(d/i)*1/Product_{j divides i} (1-x^j).
Comments