cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074761 Number of partitions of n of order n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 9, 1, 4, 5, 1, 1, 12, 1, 27, 7, 6, 1, 81, 1, 7, 1, 54, 1, 407, 1, 1, 11, 9, 13, 494, 1, 10, 13, 423, 1, 981, 1, 137, 115, 12, 1, 1309, 1, 59, 17, 193, 1, 240, 21, 1207, 19, 15, 1, 47274, 1, 16, 239, 1, 25, 3284, 1, 333, 23, 3731, 1, 42109, 1, 19
Offset: 1

Views

Author

Vladeta Jovovic, Sep 28 2002

Keywords

Comments

Order of partition is lcm of its parts.
a(n) is the number of conjugacy classes of the symmetric group S_n such that a representative of the class has order n. Here order means the order of an element of a group. Note that a(n) = 1 if and only if n is a prime power. - W. Edwin Clark, Aug 05 2014

Examples

			The a(15) = 5 partitions are (15), (5,3,3,3,1), (5,5,3,1,1), (5,3,3,1,1,1,1), (5,3,1,1,1,1,1,1,1). - _Gus Wiseman_, Aug 01 2018
		

Crossrefs

Programs

  • Maple
    A:= proc(n)
          uses numtheory;
          local S;
        S:= add(mobius(n/i)*1/mul(1-x^j,j=divisors(i)),i=divisors(n));
        coeff(series(S,x,n+1),x,n);
    end proc:
    seq(A(n),n=1..100); # Robert Israel, Aug 06 2014
  • Mathematica
    a[n_] := With[{s = Sum[MoebiusMu[n/i]*1/Product[1-x^j, {j, Divisors[i]}], {i, Divisors[n]}]}, SeriesCoefficient[s, {x, 0, n}]]; Array[a, 80] (* Jean-François Alcover, Feb 29 2016 *)
    Table[Length[Select[IntegerPartitions[n],LCM@@#==n&]],{n,50}] (* Gus Wiseman, Aug 01 2018 *)
  • PARI
    pr(k, x)={my(t=1); fordiv(k, d, t *= (1-x^d) ); return(t); }
    a(n) =
    {
        my( x = 'x+O('x^(n+1)) );
        polcoeff( Pol( sumdiv(n, i, moebius(n/i) / pr(i, x) ) ), n );
    }
    vector(66, n, a(n) )
    \\ Joerg Arndt, Aug 06 2014

Formula

Coefficient of x^n in expansion of Sum_{i divides n} A008683(n/i)*1/Product_{j divides i} (1-x^j).