A074761 Number of partitions of n of order n.
1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 9, 1, 4, 5, 1, 1, 12, 1, 27, 7, 6, 1, 81, 1, 7, 1, 54, 1, 407, 1, 1, 11, 9, 13, 494, 1, 10, 13, 423, 1, 981, 1, 137, 115, 12, 1, 1309, 1, 59, 17, 193, 1, 240, 21, 1207, 19, 15, 1, 47274, 1, 16, 239, 1, 25, 3284, 1, 333, 23, 3731, 1, 42109, 1, 19
Offset: 1
Examples
The a(15) = 5 partitions are (15), (5,3,3,3,1), (5,5,3,1,1), (5,3,3,1,1,1,1), (5,3,1,1,1,1,1,1,1). - _Gus Wiseman_, Aug 01 2018
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 1..4000 (first 1025 terms from Joerg Arndt)
Crossrefs
Programs
-
Maple
A:= proc(n) uses numtheory; local S; S:= add(mobius(n/i)*1/mul(1-x^j,j=divisors(i)),i=divisors(n)); coeff(series(S,x,n+1),x,n); end proc: seq(A(n),n=1..100); # Robert Israel, Aug 06 2014
-
Mathematica
a[n_] := With[{s = Sum[MoebiusMu[n/i]*1/Product[1-x^j, {j, Divisors[i]}], {i, Divisors[n]}]}, SeriesCoefficient[s, {x, 0, n}]]; Array[a, 80] (* Jean-François Alcover, Feb 29 2016 *) Table[Length[Select[IntegerPartitions[n],LCM@@#==n&]],{n,50}] (* Gus Wiseman, Aug 01 2018 *)
-
PARI
pr(k, x)={my(t=1); fordiv(k, d, t *= (1-x^d) ); return(t); } a(n) = { my( x = 'x+O('x^(n+1)) ); polcoeff( Pol( sumdiv(n, i, moebius(n/i) / pr(i, x) ) ), n ); } vector(66, n, a(n) ) \\ Joerg Arndt, Aug 06 2014
Formula
Coefficient of x^n in expansion of Sum_{i divides n} A008683(n/i)*1/Product_{j divides i} (1-x^j).
Comments