cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A294879 Number of proper divisors of n that are in Perrin sequence, A001608.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 2, 1, 0, 2, 0, 3, 2, 1, 0, 3, 1, 1, 1, 2, 0, 4, 0, 1, 1, 2, 2, 3, 0, 1, 1, 3, 0, 3, 0, 2, 2, 1, 0, 3, 1, 3, 2, 1, 0, 2, 1, 2, 1, 2, 0, 5, 0, 1, 2, 1, 1, 3, 0, 2, 1, 4, 0, 3, 0, 1, 2, 1, 1, 3, 0, 3, 1, 1, 0, 4, 2, 1, 2, 2, 0, 4, 1, 1, 1, 1, 1, 3, 0, 2, 1, 3, 0, 4, 0, 1, 3, 1, 0, 3, 0, 4, 1, 2, 0, 2, 1, 2, 2, 1, 2, 5, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2017

Keywords

Examples

			For n = 22, with proper divisors [1, 2, 11], only 2 is in A001608, thus a(22) = 1.
For n = 121, with proper divisors [1, 11], neither of them is in A001608, thus a(121) = 0. Note that this is the first zero not in A008578.
For n = 644, with proper divisors [1, 2, 4, 7, 14, 23, 28, 46, 92, 161, 322, 644], both 2 and 7 are in A001608, thus a(644) = 2.
		

Crossrefs

Programs

  • PARI
    A001608(n) = if(n<0, 0, polsym(x^3-x-1, n)[n+1]);
    A294878(n) = { my(k=1,v); while((v=A001608(k))A294879(n) = sumdiv(n,d,(dA294878(d));

Formula

a(n) = Sum_{d|n, dA294878(d).
a(n) = A294880(n) - A294878(n).

A294880 Number of divisors of n that are in Perrin sequence, A001608.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 3, 0, 3, 0, 2, 2, 1, 1, 2, 0, 3, 2, 2, 0, 3, 1, 1, 1, 2, 1, 4, 0, 1, 1, 2, 2, 3, 0, 1, 2, 3, 0, 3, 0, 2, 2, 1, 0, 3, 1, 3, 3, 1, 0, 2, 1, 2, 1, 2, 0, 5, 0, 1, 2, 1, 1, 3, 0, 3, 1, 4, 0, 3, 0, 1, 2, 1, 1, 3, 0, 3, 1, 1, 0, 4, 2, 1, 2, 2, 0, 5, 1, 1, 1, 1, 1, 3, 0, 2, 1, 3, 0, 4, 0, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2017

Keywords

Examples

			For n = 22, with divisors [1, 2, 11, 22], both 2 and 22 are in A001608, thus a(22) = 2.
For n = 644, with divisors [1, 2, 4, 7, 14, 23, 28, 46, 92, 161, 322, 644], 2, 7 and 644 are in A001608, thus a(644) = 3.
		

Crossrefs

Programs

  • Mathematica
    With[{s = LinearRecurrence[{0, 1, 1}, {3, 2, 5}, 15]}, Table[DivisorSum[n, 1 &, MemberQ[s, #] &], {n, 1, s[[-1]]}]] (* Amiram Eldar, Jan 01 2024 *)
  • PARI
    A001608(n) = if(n<0, 0, polsym(x^3-x-1, n)[n+1]);
    A294878(n) = { my(k=1,v); while((v=A001608(k))A294880(n) = sumdiv(n,d,A294878(d));

Formula

a(n) = Sum_{d|n} A294878(d).
a(n) = A294879(n) + A294878(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = -1/5 + Sum_{n>=3} 1/A001608(n) = 1.603595519775230150708... . - Amiram Eldar, Jan 01 2024

A112881 Indices of prime Perrin numbers; values of n such that A001608(n) is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 10, 12, 20, 21, 24, 34, 38, 75, 122, 166, 236, 355, 356, 930, 1042, 1214, 1461, 1622, 4430, 5802, 9092, 16260, 18926, 23698, 40059, 45003, 73807, 91405, 263226, 316872, 321874, 324098, 581132, 939189, 1034005, 1430138
Offset: 1

Views

Author

Eric W. Weisstein, Oct 05 2005

Keywords

Crossrefs

Extensions

a(34) from Eric W. Weisstein, Oct 06 2005
a(35) = 263226 from Eric W. Weisstein, May 04 2006
a(36) = 316872 from Eric W. Weisstein, Feb 04 2007
a(37) = 321874 from Eric W. Weisstein, Feb 19 2007
a(38) = 324098 from Eric W. Weisstein, Feb 25 2007
a(39) = 581132 from Eric W. Weisstein, Feb 15 2011
a(40)-a(42) from Ryan Propper, Jun 19 2022
Showing 1-3 of 3 results.