A074791 Numbers k such that k does not divide the denominator of the k-th harmonic number.
6, 18, 20, 21, 33, 42, 54, 63, 66, 77, 100, 110, 120, 156, 162, 189, 198, 272, 294, 336, 342, 363, 377, 435, 486, 500, 506, 559, 567, 594, 600, 610, 629, 685, 703, 812, 847, 880, 924, 930, 957, 1067, 1166, 1210, 1243, 1247, 1287, 1320, 1332, 1458, 1590, 1640
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..2000
Programs
-
Mathematica
Select[ Range[1700], Mod[ Denominator[ HarmonicNumber[ # ]], # ] != 0 &] (* Robert G. Wilson v, Sep 28 2005 *) seq = {}; s = 0; Do[s += 1/n; If[! Divisible[Denominator[s], n], AppendTo[seq, n]], {n, 1, 2000}]; seq (* Amiram Eldar, Dec 01 2020 *)
Formula
Is a(n) asymptotic to c*n^2 0.5
a(n) < 2*n^2*log(n)^2 for all n > 2. This follows from the fact that for all k > 1 there exists an n such that A036689(k) is equal to A074791(n). - Wouter van Doorn, Nov 06 2024
Extensions
Better description and more terms from Robert G. Wilson v, Sep 28 2005
Comments