A074845 Numbers k such that S(k) = largest difference between consecutive divisors of k (ordered by size), where S(k) is the Kempner function (A002034).
6, 8, 9, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..670 (a(n) < 10^4, from b-file at A002034).
Programs
-
Mathematica
Select[Range@ 514, Function[n, Module[{m = 1}, While[! Divisible[m!, n], m++]; m] == Max@ Differences@ Divisors@ n]] (* Michael De Vlieger, Jul 31 2017 *)
-
PARI
K(n) = my(s=1); while(s!%n>0, s++); s; dd(n) = my(vd=divisors(n)); vecmax(vector(#vd-1, k, vd[k+1] - vd[k])); isok(n) = K(n) == dd(n); \\ Michel Marcus, Aug 03 2017
Comments