cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074867 a(n) = M(a(n-1)) + M(a(n-2)) where a(1)=a(2)=1 and M(k) is the product of the digits of k in base 10.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 11, 4, 5, 9, 14, 13, 7, 10, 7, 7, 14, 11, 5, 6, 11, 7, 8, 15, 13, 8, 11, 9, 10, 9, 9, 18, 17, 15, 12, 7, 9, 16, 15, 11, 6, 7, 13, 10, 3, 3, 6, 9, 15, 14, 9, 13, 12, 5, 7, 12, 9, 11, 10, 1, 1, 2, 3, 5, 8, 13, 11, 4, 5, 9, 14, 13, 7, 10, 7, 7, 14, 11, 5, 6, 11, 7, 8, 15, 13
Offset: 1

Views

Author

Felice Russo, Sep 11 2002

Keywords

Comments

Periodic with least period 60. - Christopher N. Swanson (cswanson(AT)ashland.edu), Jul 22 2003
From Hieronymus Fischer, Jul 01 2007: (Start)
The digital product analog (in base 10) of the Fibonacci recurrence.
a(n) and Fib(n)=A000045(n) are congruent modulo 10 which implies that (a(n) mod 10) is equal to (Fib(n) mod 10) = A003893(n). Thus (a(n) mod 10) is periodic with the Pisano period A001175(10)=60.
a(n)==A131297(n) modulo 10 (A131297(n)=digital sum analog base 11 of the Fibonacci recurrence).
For general bases p>1, we have the inequality 1<=a(n)<=2p-2 (for n>0). Actually, a(n)<=18.
(End)

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,Times@@IntegerDigits[a]+Times@@IntegerDigits[b]}; Transpose[ NestList[nxt,{1,1},90]][[1]] (* Harvey P. Dale, Feb 01 2015 *)

Formula

From Hieronymus Fischer, Jul 01 2007: (Start)
a(n) = a(n-1)+a(n-2)-10*(floor(a(n-1)/10)+floor(a(n-2)/10)). This is valid, since a(n)<100.
a(n) = ds_10(a(n-1))+ds_10(a(n-2))-(floor(a(n-1)/10)+floor(a(n-2)/10)) where ds_10(x) is the digital sum of x in base 10.
a(n) = (a(n-1)mod 10)+(a(n-2)mod 10) = A010879(a(n-1))+A010879(a(n-2)).
a(n) = A131297(n) if A131297(n)<=10.
a(n) = Fib(n)-10*sum{1A000045(n).
a(n) = A000045(n)-10*sum{1A000045(n-k+1)*A059995(a(k))}. (End)

Extensions

More terms from Christopher N. Swanson (cswanson(AT)ashland.edu), Jul 22 2003
Definition adapted to offset by Georg Fischer, Jun 18 2021