cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074969 Numbers with six distinct prime divisors.

Original entry on oeis.org

30030, 39270, 43890, 46410, 51870, 53130, 60060, 62790, 66990, 67830, 71610, 72930, 78540, 79170, 81510, 82110, 84630, 85470, 87780, 90090, 91770, 92820, 94710, 98670, 99330, 101010, 102102, 103530, 103740, 106260, 106590, 108570
Offset: 1

Views

Author

Zak Seidov, Oct 04 2002

Keywords

Comments

The smallest number with six distinct prime divisors is the product of the first six primes, 2*3*5*7*11 = 30030.
The smallest number with seven distinct prime divisors is the product of the first seven primes, 2*3*5*7*11*13 = 390390.

Examples

			60060 is a term because 60060 = 2^2*3*5*7*11*13 with six distinct prime divisors 2, 3, 5, 7, 11, 13
87780 is a term because 87780 = 2^2*3*5*7*11*19 with six distinct prime divisors 2, 3, 5, 7, 11, 19.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0,5*8! ],Length[FactorInteger[ # ]]==6&] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2010 *)
  • PARI
    is(n)=omega(n)==6 \\ Charles R Greathouse IV, Jun 19 2016
    
  • PARI
    A246655(lim)=my(v=List(primes([2,lim\=1]))); for(e=2,logint(lim,2), forprime(p=2,sqrtnint(lim,e), listput(v,p^e))); Set(v)
    list(lim,pr=6)=if(pr==1, return(A246655(lim))); my(v=List(),pr1=pr-1,mx=prod(i=1,pr1,prime(i))); forprime(p=prime(pr),lim\mx, my(u=list(lim\p,pr1)); for(i=1,#u,listput(v,p*u[i]))); Set(v) \\ Charles R Greathouse IV, Feb 03 2023

Formula

{n : A001221(n) = 6} . - R. J. Mathar, Jul 07 2012