A074969 Numbers with six distinct prime divisors.
30030, 39270, 43890, 46410, 51870, 53130, 60060, 62790, 66990, 67830, 71610, 72930, 78540, 79170, 81510, 82110, 84630, 85470, 87780, 90090, 91770, 92820, 94710, 98670, 99330, 101010, 102102, 103530, 103740, 106260, 106590, 108570
Offset: 1
Keywords
Examples
60060 is a term because 60060 = 2^2*3*5*7*11*13 with six distinct prime divisors 2, 3, 5, 7, 11, 13 87780 is a term because 87780 = 2^2*3*5*7*11*19 with six distinct prime divisors 2, 3, 5, 7, 11, 19.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[0,5*8! ],Length[FactorInteger[ # ]]==6&] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2010 *)
-
PARI
is(n)=omega(n)==6 \\ Charles R Greathouse IV, Jun 19 2016
-
PARI
A246655(lim)=my(v=List(primes([2,lim\=1]))); for(e=2,logint(lim,2), forprime(p=2,sqrtnint(lim,e), listput(v,p^e))); Set(v) list(lim,pr=6)=if(pr==1, return(A246655(lim))); my(v=List(),pr1=pr-1,mx=prod(i=1,pr1,prime(i))); forprime(p=prime(pr),lim\mx, my(u=list(lim\p,pr1)); for(i=1,#u,listput(v,p*u[i]))); Set(v) \\ Charles R Greathouse IV, Feb 03 2023
Formula
{n : A001221(n) = 6} . - R. J. Mathar, Jul 07 2012
Comments