cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A086540 Numbers n such that n and n+1 both are members of A074997; i.e., on the one hand n-1 and n+1 have the same prime signature, on the other hand n and n+2 have the same prime signature.

Original entry on oeis.org

18, 55, 248, 340, 348, 722, 850, 949, 1061, 1148, 1204, 1205, 1241, 1277, 1314, 1315, 1667, 1672, 2148, 2716, 2948, 2949, 3258, 3581, 3650, 3651, 4044, 4265, 4627, 4842, 5092, 5093, 5451, 5741, 5765, 6244, 6355, 6356, 6565, 6640, 6851, 6963, 7362, 7404
Offset: 1

Views

Author

Amarnath Murthy, Aug 22 2003

Keywords

Crossrefs

Cf. A074997.

Programs

  • PARI
    isok1(n) = vecsort(factor(n-1)[,2]) == vecsort(factor(n+1)[,2]);
    isok(n) = isok1(n) && isok1(n+1); \\ Michel Marcus, Jul 28 2015

Extensions

More terms from David Wasserman, Mar 21 2005

A074996 Floor of concatenation of n, n+1, n+2, n+3, n+4, n+5 divided by 6.

Original entry on oeis.org

2057, 20576, 39094, 57613, 76131, 946485, 11315168, 131516852, 1485018535, 15168520219, 16852021902, 18535523586, 20219025269, 21902526953, 23586028636, 25269530320, 26953032003, 28636533687, 30320035370
Offset: 0

Views

Author

Amarnath Murthy, Aug 31 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[FromDigits[Flatten[IntegerDigits[Range[n,n+5]]]]/6],{n,0,18}] (* Jayanta Basu, May 22 2013 *)

Extensions

Edited by Dean Hickerson, Nov 03 2002

A074993 a(n) = floor((concatenation of n, n+1)/2).

Original entry on oeis.org

0, 6, 11, 17, 22, 28, 33, 39, 44, 455, 505, 556, 606, 657, 707, 758, 808, 859, 909, 960, 1010, 1061, 1111, 1162, 1212, 1263, 1313, 1364, 1414, 1465, 1515, 1566, 1616, 1667, 1717, 1768, 1818, 1869, 1919, 1970, 2020, 2071, 2121, 2172, 2222, 2273, 2323, 2374
Offset: 0

Views

Author

Amarnath Murthy, Aug 31 2002

Keywords

Comments

The first differences follow a pattern. Odd-indexed terms and even-indexed terms form separate A.P.s with the same common difference for all n except n = 10^k -1. The corresponding common differences are the repunits = (10^(d+1)-1)/9 where d = the number of digits in n.

Crossrefs

Programs

  • Mathematica
    cc[n_]:=Floor[FromDigits[Join[IntegerDigits[n],IntegerDigits[n+1]]]/2]; Array[cc,40,0] (* Harvey P. Dale, Nov 11 2011 *)

A074994 Floor of concatenation of n, n+1, n+2, n+3 divided by 4.

Original entry on oeis.org

30, 308, 586, 864, 1141, 1419, 1697, 19727, 222752, 2275278, 2527803, 2780328, 3032853, 3285379, 3537904, 3790429, 4042954, 4295480, 4548005, 4800530, 5053055, 5305581, 5558106, 5810631, 6063156, 6315682, 6568207, 6820732
Offset: 0

Views

Author

Amarnath Murthy, Aug 31 2002

Keywords

Examples

			a(7) = floor(78910/4) = 19727.
		

Crossrefs

Extensions

Edited by Dean Hickerson, Nov 03 2002

A074995 Floor of concatenation of n, n+1, n+2, n+3, n+4 divided by 5.

Original entry on oeis.org

246, 2469, 4691, 6913, 9135, 11357, 135782, 1578202, 17820222, 182022242, 202224262, 222426283, 242628303, 262830323, 283032343, 303234363, 323436384, 343638404, 363840424, 384042444, 404244464, 424446485, 444648505, 464850525
Offset: 0

Views

Author

Amarnath Murthy, Aug 31 2002

Keywords

Crossrefs

Extensions

Edited by Dean Hickerson, Nov 03 2002

A280383 Numbers n such that n-1 has the same count of prime factors as n+1 when including multiplicity and also when not.

Original entry on oeis.org

4, 6, 12, 18, 19, 30, 34, 42, 51, 55, 56, 60, 72, 86, 92, 94, 102, 108, 138, 142, 144, 150, 160, 180, 184, 186, 192, 198, 202, 204, 214, 216, 218, 220, 228, 236, 240, 243, 248, 249, 266, 270, 282, 300, 302, 304, 307, 312, 320, 322, 328, 340, 341, 348, 349, 392, 394, 412, 414, 416, 420, 424, 432, 446, 452, 462, 470, 472, 476, 491, 516, 518, 522, 534, 536, 544, 552, 570, 580, 582, 590, 600, 604, 618, 634, 638, 642, 660, 664, 668, 670, 680, 686, 688, 696, 698, 701, 722
Offset: 1

Views

Author

Rick L. Shepherd, Jan 02 2017

Keywords

Comments

First differs from its subsequence A074997 at a(97) = 701 because A074997(97) = 722.

Examples

			The number 19 is a term because 18 = 2*3^2 and 20 = 2^2*5 each have two distinct prime factors and each have three prime factors when counted with multiplicity.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[800],PrimeNu[#]==PrimeNu[#+2]&&PrimeOmega[#]==PrimeOmega[#+2]&]+1 (* Harvey P. Dale, Jul 12 2023 *)
  • PARI
    IsInA280383(n) = n > 1 && bigomega(n-1) == bigomega(n+1) && omega(n-1) == omega(n+1)

Formula

Sequence is A088070 INTERSECT A280382.

A074998 Composite numbers which are sandwiched between two numbers having the same unordered canonical form.

Original entry on oeis.org

4, 6, 12, 18, 30, 34, 42, 51, 55, 56, 60, 72, 86, 92, 94, 102, 108, 138, 142, 144, 150, 160, 180, 184, 186, 192, 198, 202, 204, 214, 216, 218, 220, 228, 236, 240, 243, 248, 249, 266, 270, 282, 300, 302, 304, 312, 320, 322, 328, 340, 341, 348, 392, 394, 412
Offset: 1

Views

Author

Amarnath Murthy, Aug 21 2002

Keywords

Comments

The average of twin primes is a member.

Examples

			34 is sandwiched between 33 and 35 which are of the form p*q where p and q are primes.
		

Crossrefs

Programs

  • Maple
    k := 0: for j from 2 to 5000 do if not isprime(j) then a := ifactors(j-1): b := ifactors(j+1): if sort([seq(a[2][i][2],i= 1..nops(a[2]))])= sort([seq(b[2][i][2],i= 1..nops(b[2]))]) then k := k+1: c[k] := j: fi: fi: od: seq(c[i],i= 1..k);

Extensions

More terms from Sascha Kurz, Aug 22 2002
Offset corrected by Amiram Eldar, Jan 02 2020
Showing 1-7 of 7 results.