cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075115 Binomial transform of A073145: a(n)=Sum(binomial(n,k)*A073145(k),(k=0,..,n)).

Original entry on oeis.org

3, 2, 0, 2, 8, 12, 12, 16, 32, 56, 80, 112, 176, 288, 448, 672, 1024, 1600, 2496, 3840, 5888, 9088, 14080, 21760, 33536, 51712, 79872, 123392, 190464, 293888, 453632, 700416, 1081344, 1669120, 2576384, 3977216, 6139904, 9478144, 14630912
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 02 2002

Keywords

Comments

a(n) is nonnegative since the real root of x^3-2*x^2+2*x-2 is dominant. - Michael Somos, Feb 28 2007

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(3-4*x+2*x^2)/(1-2*x+2*x^2-2*x^3), {x, 0, 40}], x]
    LinearRecurrence[{2,-2,2},{3,2,0},40] (* Harvey P. Dale, Jan 24 2019 *)
  • PARI
    {a(n)= if(n<0, 0, polsym( x^3 -2*x^2 +2*x -2, n) [n+1])} /* Michael Somos, Feb 28 2007 */

Formula

a(n)=2a(n-1)-2a(n-2)+2a(n-3), a(0)=3, a(1)=2, a(2)=0.
G.f.: (3 - 4*x + 2*x^2)/(1 - 2*x + 2*x^2 - 2*x^3).
a(n) = 3*A077943(n) -4*A077943(n-1) +2*A077943(n-2). - R. J. Mathar, Mar 13 2021