A075135 Numerator of the generalized harmonic number H(n,3,1) described below.
1, 5, 39, 209, 2857, 11883, 233057, 2632787, 13468239, 13739939, 433545709, 7488194853, 281072414761, 284780929571, 12393920563953, 288249495707519, 2038704876507433, 2058454144222533, 2077126179153173, 60750140156034617
Offset: 1
Examples
a(3)=39 because 1 + 1/4 + 1/7 = 39/28.
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 263, 269, 272, 297, 302, 356.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, 1971, page 88.
Links
- Eric Weisstein's World of Mathematics, Harmonic Series
- Eric Weisstein's World of Mathematics, Harmonic Number
- Eric Weisstein's World of Mathematics, Jeep Problem
Crossrefs
Programs
-
Mathematica
a=3; b=1; maxN=20; s=0; Numerator[Table[s+=1/(a n + b), {n, 0, maxN-1}]] Accumulate[1/Range[1,60,3]]//Numerator (* Harvey P. Dale, Dec 30 2019 *)
Comments