A075152 Number of possible permutations of a Rubik cube of size n X n X n.
1, 3674160, 43252003274489856000, 7401196841564901869874093974498574336000000000, 282870942277741856536180333107150328293127731985672134721536000000000000000
Offset: 1
Keywords
References
- Dan Hoey, posting to Cube Lovers List, Jun 24, 1987.
- Rowley, Chris, The group of the Hungarian magic cube, in Algebraic structures and applications (Nedlands, 1980), pp. 33-43, Lecture Notes in Pure and Appl. Math., 74, Dekker, New York, 1982.
Links
- Robert Munafo, Table of n, a(n) for n = 1..27 (first 10 terms from Robert G. Wilson v)
- Answers.com, Rubik's Cube.
- Isaiah Bowers, How To Solve A Rubik's Cube.
- Richard Carr, The Number of Possible Positions of an N x N x N Rubik Cube
- Cube Lovers, Discussions on the mathematics of the cube
- Cube Lovers Archive, Mailing List
- Cube20.org, God's Number is 20
- Christophe Goudey, Information
- David Joyner, Adventures in Group Theory: Rubik's Cube, Merlin's Machine, and Other Mathematical Toys, 2008. See Example 4.5.1. p. 73.
- Naren Ramesh, Generalising the configurations of an N X N X N Rubik's Cube, Parabola (2023) Vol. 59, Issue 3. See p. 22.
- Jaap Scherphuis, Puzzle Pages
- Eric Weisstein's World of Mathematics, Rubik's Cube
- WikiHow, How to Solve a Rubik's Cube with the Layer Method
- Wikipedia, Rubik's Cube
- Wikipedia, Professor's Cube
Crossrefs
Programs
-
Maple
f := proc(n) local A,B,C,D,E,F,G; if n mod 2 = 1 then A := (n-1)/2; F := 0; B := 1; C := 1; D := 0; E := (n+1)*(n-3)/4; G := (n-1)*(n-3)/4; else A := n/2; F := 1; B := 1; C := 0; D := 0; E := n*(n-2)/4; G := (n-2)^2/4; fi; (2^A*((8!/2)*3^7)^B*((12!/2)*2^11)^C*((4^6)/2)^D*(24!/2)^E)/(24^F*((24^6)/2)^G); end;
-
Mathematica
f[n_] := Block[{a, b, c, d, e, f, g}, If[OddQ@ n, a = (n - 1)/2; b = c = 1; d = f = 0; e = (n + 1) (n - 3)/4; g = (n - 1) (n - 3)/4, a = n/2; b = f = 1; c = d = 0; e = n (n - 2)/4; g = (n - 2)^2/4]; Ceiling[(2^a*((8!/2)*3^7)^b*((12!/2)*2^11)^c*((4^6)/2)^d*(24!/2)^e)/(24^f*((24^6)/2)^g)]]; Array[f, 10] (* Robert G. Wilson v, May 23 2009 *) f[1]=1; f[2]=7!3^6; f[3]=8!3^7 12!2^10;f[n_]:=f[n-2]*24^6*(24!/24^6)^(n-2);Table[f[n],{n,1,10}] (* Herbert Kociemba, Dec 08 2016 *) f[1]=1;f[n_]:=7!3^6(6*24!!)^(s=Mod[n,2])24!^(r=(n-s)/2-1)(24!/4!^6)^(r(r+s)); Array[f,5] (* Herbert Kociemba, Jul 03 2022 *)
-
Maxima
A075152(n) := block( if n = 1 then return (1), [a:1,b:1,c:1,d:1,e:1,f:1,g:1], if mod(n, 2) = 1 then ( a : (n-1)/2, f : 0, b : 1, c : 1, d : 0, e : (n+1)*(n-3)/4, g : (n-1)*(n-3)/4 ) else ( a : n/2, f : 1, b : 1, c : 0, d : 0, e : n*(n-2)/4, g : (n-2)^2/4 ), return ( (2^a * ((factorial(8)/2)*3^7)^b * ((factorial(12)/2)*2^11)^c * ((4^6)/2)^d * (factorial(24)/2)^e) / (24^f * ((24^6)/2)^g) ) )$ for i:1 thru 27 step 1 do ( sprint(i, A075152(i)), newline() )$ /* Robert Munafo, Nov 12 2014 */
-
PARI
A075152(n)=ceil(3674160*(11771943321600)^(n%2)*620448401733239439360000^floor((n-2)/2)*(3246670537110000)^floor(((n-2)/2)^2)) \\ Davis Smith, Mar 20 2020
Formula
a(1)=1; a(2)=7!*3^6; a(3)=8!*3^7*12!*2^10; a(n)=a(n-2)*24^6*(24!/24^6)^(n-2). - Herbert Kociemba, Dec 08 2016
a(n) = ceiling(3674160*11771943321600^(n mod 2)*620448401733239439360000^floor((n - 2)/2)*3246670537110000^floor(((n - 2)/2)^2)). - Davis Smith, Mar 20 2020
Extensions
Entry revised by N. J. A. Sloane, Apr 01 2006
Offset changed to 1 by N. J. A. Sloane, Sep 02 2009
Comments