cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075156 Binomial transform of pentanacci numbers A074048: a(n) = Sum_{k=0..n} binomial(n,k)*A074048(k).

Original entry on oeis.org

5, 6, 10, 24, 70, 216, 664, 2008, 5998, 17808, 52770, 156360, 463492, 1374392, 4076222, 12090144, 35859742, 106359928, 315460168, 935639768, 2775057510, 8230670416, 24411730298, 72403913480, 214746249796, 636926269816
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 07 2002

Keywords

Crossrefs

Cf. A074048.

Programs

  • Maple
    M := Matrix(5, (i,j)-> if (i=j-1) then 1 elif j>1 then 0 else [6,-13,14,-7,2][i] fi); a := n -> (Matrix([[70,24,10,6,5]]).M^(n))[1,5]; seq (a(n), n=0..50); # Alois P. Heinz, Jul 25 2008
  • Mathematica
    CoefficientList[Series[(5-24*x+39*x^2-28*x^3+7*x^4)/(1-6*x+13*x^2-14*x^3+7*x^4-2*x^5), {x, 0, 25}], x]
    LinearRecurrence[{6,-13,14,-7,2},{5,6,10,24,70},30] (* Harvey P. Dale, Mar 10 2019 *)

Formula

a(n) = 6a(n-1) - 13a(n-2) + 14a(n-3) - 7a(n-4) + 2a(n-5), a(0)=5, a(1)=6, a(2)=10, a(3)=24, a(4)=70.
G.f.: (5 - 24*x + 39*x^2 - 28*x^3 + 7*x^4)/(1 - 6*x + 13*x^2 - 14*x^3 + 7*x^4 - 2*x^5).
a(n) = term (1,5) in the 1 X 5 matrix [70,24,10,6,5]. [6,1,0,0,0; -13,0,1,0,0; 14,0,0,1,0; -7,0,0,0,1; 2,0,0,0,0]^n. - Alois P. Heinz, Jul 25 2008