A075191 Numbers k such that k^3 is an interprime = average of two successive primes.
4, 12, 16, 26, 28, 36, 48, 58, 66, 68, 74, 78, 102, 106, 112, 117, 124, 126, 129, 130, 148, 152, 170, 174, 184, 189, 190, 192, 224, 273, 280, 297, 321, 324, 369, 372, 373, 399, 408, 410, 421, 426, 429, 435, 447, 449, 450, 470, 475, 496, 504, 507, 531, 537
Offset: 1
Keywords
Examples
4 is a term because 4^3 = 64 is the average of two successive primes 61 and 57.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
Crossrefs
Programs
-
Maple
s := 3: for n from 2 to 1000 do if prevprime(n^s)+nextprime(n^s)=2*n^s then print(n) else; fi; od;
-
Mathematica
Select[ Range[548], 2#^3 == PrevPrim[ #^3] + NextPrim[ #^3] &] n3ipQ[n_]:=Mean[{NextPrime[n^3],NextPrime[n^3,-1]}]==n^3; Select[ Range[ 600],n3ipQ] (* Harvey P. Dale, Oct 05 2017 *) Select[Surd[Mean[#],3]&/@Partition[Prime[Range[8*10^6]],2,1],IntegerQ] (* Harvey P. Dale, Apr 07 2023 *)
-
PARI
is(n)=n=n^3;nextprime(n)+precprime(n)==2*n \\ Charles R Greathouse IV, Aug 25 2014
Extensions
Edited by Robert G. Wilson v Sep 14 2002
Comments