A075192 Numbers k such that k^4 is an interprime = average of two successive primes.
3, 5, 8, 21, 55, 66, 87, 99, 104, 105, 110, 120, 129, 135, 141, 144, 152, 168, 172, 186, 187, 192, 211, 222, 243, 279, 283, 295, 297, 321, 342, 385, 395, 398, 408, 425, 426, 460, 520, 541, 559, 597, 626, 627, 638, 642, 657, 666, 673, 680, 713, 755, 759, 765
Offset: 1
Keywords
Examples
3 belongs to this sequence because 3^4 = 81 is the average of two successive primes 79 and 83.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
s := 4: for n from 2 to 1000 do if prevprime(n^s)+nextprime(n^s)=2*n^s then print(n) else; fi; od;
-
Mathematica
intprQ[n_]:=Module[{c=n^4},c==Mean[{NextPrime[c],NextPrime[c,-1]}]]; Select[Range[800],intprQ] (* Harvey P. Dale, Dec 01 2013 *)
Extensions
Edited by Robert G. Wilson v Sep 14 2002
Comments