A075197 Number of partitions of n balls of n colors.
1, 1, 6, 38, 305, 2777, 28784, 330262, 4152852, 56601345, 829656124, 12992213830, 216182349617, 3804599096781, 70540645679070, 1373192662197632, 27982783451615363, 595355578447896291, 13193917702518844859, 303931339674133588444, 7263814501407389465610
Offset: 0
Keywords
Examples
Illustration of first terms, ordered by number of parts, size of parts and smallest color of parts, etc. a(1) = 1: {{1}} a(2) = 6 = 3+3: {{1,1}},{{1,2}},{{2,2}}, {{1},{1}},{{1},{2}},{{2},{2}} a(3) = 38 = 10+18+10: {{1,1,1}},{{1,1,2}},{{1,1,3}},{{1,2,2}},{{1,2,3}},{{1,3,3}}, {{2,2,2}},{{2,2,3}},{{2,3,3}},{{3,3,3}}, {{1},{1,1}},{{1},{1,2}},{{1},{1,3}},{{1},{2,2}},{{1},{2,3}},{{1},{3,3}}, {{2},{1,1}},{{2},{1,2}},{{2},{1,3}},{{2},{2,2}},{{2},{2,3}},{{2},{3,3}}, {{3},{1,1}},{{3},{1,2}},{{3},{1,3}},{{3},{2,2}},{{3},{2,3}},{{3},{3,3}}, {{1},{1},{1}},{{1},{1},{2}},{{1},{1},{3}},{{1},{2},{2}},{{1},{2},{3}},{{1},{3},{3}}, {{2},{2},{2}},{{2},{2},{3}},{{2},{3},{3}},{{3},{3},{3}}
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
Crossrefs
Main diagonal of A075196.
Cf. A001700 (n balls of one color in n unlabeled boxes).
Cf. A209668 (boxes are ordered by size but not by content among a given size: order among boxes of the same size matters.),
Cf. A261783 (compositions of balls of n colors: boxes are labeled)
Cf. A252654 (lists instead of boxes : order of balls matter)
Cf. A000262 (lists instead of boxes and all n colors are used)
Cf. A255906 (the c colors used form the interval [1,c])
Cf. A255951 (the n-1 colors used form the interval [1,n-1])
Cf. A255942 (0/1 binary coloring)
Cf. A066186 (only 1 color among n = n * p(n))
Cf. A000110 (the n possible colors are used : set partitions of [n])
Cf. A005651 (the n possible colors are used and order of parts of the same size matters)
Cf. A000670 (the n possible colors are used and order of all parts matters)
Programs
-
Maple
with(numtheory): A:= proc(n, k) option remember; `if`(n=0, 1, add(add(d* binomial(d+k-1, k-1), d=divisors(j))*A(n-j, k), j=1..n)/n) end: a:= n-> A(n, n): seq(a(n), n=0..20); # Alois P. Heinz, Sep 26 2012
-
Mathematica
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[Sum[d*Binomial[d+k-1, k-1], {d, Divisors[j]}]*A[n-j, k], {j, 1, n}]/n]; a[n_] := A[n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
Formula
a(n) = [x^n] Product_{k>=1} 1 / (1 - x^k)^binomial(k+n-1,n-1). - Ilya Gutkovskiy, May 09 2021
Comments