A075231 Numbers k such that k^8 is an interprime = average of two successive primes.
12, 111, 116, 175, 183, 205, 246, 305, 313, 406, 438, 593, 594, 620, 696, 714, 788, 824, 844, 969, 1014, 1023, 1061, 1080, 1153, 1176, 1204, 1288, 1367, 1456, 1470, 1515, 1533, 1538, 1572, 1626, 1659, 1689, 1692, 1695, 1734, 1759, 1788, 1860, 1928
Offset: 1
Keywords
Examples
12 is a term because 12^8 = 429981696 is the average of two successive primes 429981691 and 429981701.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
s := 8: for n from 2 to 1000 do if prevprime(n^s)+nextprime(n^s)=2*n^s then print(n) else; fi; od;
-
Mathematica
Select[Range[2000], 2#^8 == NextPrime[#^8, -1] + NextPrime[#^8] &]
Extensions
Edited by Robert G. Wilson v Sep 14 2002
Comments